Skip to main content
Log in

Pseudoscalar Higgs bosons at the LHC: production and decays into electroweak gauge bosons revisited

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We analyse and compute, within a number of standard model (SM) extensions, the cross sections σ AVV for the production of a heavy neutral pseudoscalar Higgs-boson/spin-zero resonance at the LHC and its subsequent decays into electroweak gauge bosons. For comparison we calculate also the corresponding cross sections for a heavy scalar. The SM extensions we consider include a type-II two-Higgs doublet model (2HDM), a 2HDM with four chiral fermion generations, the minimal supersymmetric extension of the SM (MSSM), and top-colour assisted technicolour models. Presently available phenomenological constraints on the parameters of these models are taken into account. We find that, with the exception of the MSSM, these models permit the LHC cross sections σ AVV to be of observable size. That is, a pseudoscalar resonance may be observable, if it exists, at the LHC in its decays into electroweak gauge bosons, in particular in WW and γ γ final states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Djouadi, Phys. Rep. 457, 1–216 (2008). arXiv:hep-ph/0503172

    Article  ADS  Google Scholar 

  2. G. Cvetic, Rev. Mod. Phys. 71, 513–574 (1999). arXiv:hep-ph/9702381

    Article  ADS  Google Scholar 

  3. C.T. Hill, E.H. Simmons, Phys. Rep. 381, 235–402 (2003). arXiv:hep-ph/0203079

    Article  ADS  Google Scholar 

  4. A. Djouadi, Phys. Rep. 459, 1–241 (2008). arXiv:hep-ph/0503173

    Article  ADS  Google Scholar 

  5. E. Accomando et al., arXiv:hep-ph/0608079

  6. D.E. Morrissey, T. Plehn, T.M.P. Tait, arXiv:0912.3259 [hep-ph]

  7. A. Bredenstein, A. Denner, S. Dittmaier, M.M. Weber, J. High Energy Phys. 02, 080 (2007). arXiv:hep-ph/0611234

    Article  ADS  Google Scholar 

  8. T. Aaltonen, et al. (CDF and D0 Collaboration), Phys. Rev. Lett. 104, 061804 (2010)

    Article  ADS  Google Scholar 

  9. S. Asai et al., Eur. Phys. J. C 32S2, 19–54 (2004). arXiv:hep-ph/0402254

    Article  Google Scholar 

  10. S. Asai et al., Eur. Phys. J. C 39S2, 41–61 (2005)

    Google Scholar 

  11. A. Mendez, A. Pomarol, Phys. Lett. B 272, 313–318 (1991)

    Article  ADS  Google Scholar 

  12. J.F. Gunion, H.E. Haber, C. Kao, Phys. Rev. D 46, 2907–2917 (1992)

    Article  ADS  Google Scholar 

  13. C.A. Nelson, Phys. Rev. D 37, 1220 (1988)

    Article  ADS  Google Scholar 

  14. A. Soni, R.M. Xu, Phys. Rev. D 48, 5259–5263 (1993). arXiv:hep-ph/9301225

    Article  ADS  Google Scholar 

  15. A. Skjold, P. Osland, Phys. Lett. B 311, 261–265 (1993). arXiv:hep-ph/9303294

    Article  ADS  Google Scholar 

  16. V.D. Barger, K.-M. Cheung, A. Djouadi, B.A. Kniehl, P.M. Zerwas, Phys. Rev. D 49, 79–90 (1994). arXiv:hep-ph/9306270

    Article  ADS  Google Scholar 

  17. T. Arens, L.M. Sehgal, Z. Phys. C 66, 89–94 (1995). arXiv:hep-ph/9409396

    Article  ADS  Google Scholar 

  18. S.Y. Choi, D.J. Miller, M.M. Muhlleitner, P.M. Zerwas, Phys. Lett. B 553, 61–71 (2003). arXiv:hep-ph/0210077

    Article  ADS  Google Scholar 

  19. C.P. Buszello, I. Fleck, P. Marquard, J.J. van der Bij, Eur. Phys. J. C 32, 209–219 (2004). arXiv:hep-ph/0212396

    Article  ADS  Google Scholar 

  20. R.M. Godbole, D.J. Miller, M.M. Muhlleitner, J. High Energy Phys. 12, 031 (2007). arXiv:0708.0458 [hep-ph]

    Article  ADS  Google Scholar 

  21. Y. Gao, A.V. Gritsan, Z. Guo, K. Melnikov, M. Schulze, N.V. Tran, Phys. Rev. D 81, 075022 (2010). arXiv:1001.3396 [hep-ph]

    Article  ADS  Google Scholar 

  22. A. De Rujula, J. Lykken, M. Pierini, C. Rogan, M. Spiropulu, arXiv:1001.5300 [hep-ph]

  23. A. Djouadi, J.-L. Kneur, G. Moultaka, Comput. Phys. Commun. 176, 426–455 (2007). arXiv:hep-ph/0211331

    Article  ADS  Google Scholar 

  24. T. Hahn, S. Heinemeyer, F. Maltoni, G. Weiglein, S. Willenbrock, arXiv:hep-ph/0607308

  25. R.M. Barnett, H.E. Haber, D.E. Soper, Nucl. Phys. B 306, 697 (1988)

    Article  ADS  Google Scholar 

  26. D.A. Dicus, S. Willenbrock, Phys. Rev. D 39, 751 (1989)

    Article  ADS  Google Scholar 

  27. S. Dittmaier, M. Kramer, M. Spira, Phys. Rev. D 70, 074010 (2004). arXiv:hep-ph/0309204

    Article  ADS  Google Scholar 

  28. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76–89 (2000). arXiv:hep-ph/9812320

    Article  ADS  MATH  Google Scholar 

  29. R. Harlander, J. Phys. G 35, 033001 (2008)

    Article  ADS  Google Scholar 

  30. S. Catani, D. de Florian, M. Grazzini, P. Nason, J. High Energy Phys. 07, 028 (2003). arXiv:hep-ph/0306211. The tables interpolated by FeynHiggs were taken from F. Maltoni, http://maltoni.home.cern.ch/maltoni/TeV4LHC/index.html

    Article  ADS  Google Scholar 

  31. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 181, 138–167 (2010). arXiv:0811.4169 [hep-ph]

    Article  ADS  Google Scholar 

  32. M.E. Peskin, T. Takeuchi, Phys. Rev. Lett. 65, 964–967 (1990)

    Article  ADS  Google Scholar 

  33. G. Altarelli, R. Barbieri, Phys. Lett. B 253, 161–167 (1991)

    Article  ADS  Google Scholar 

  34. O. Brein, Comput. Phys. Commun. 170, 42–48 (2005). arXiv:hep-ph/0407340

    Article  ADS  Google Scholar 

  35. T. Hahn, Comput. Phys. Commun. 140, 418–431 (2001). arXiv:hep-ph/0012260

    Article  ADS  MATH  Google Scholar 

  36. T. Hahn, C. Schappacher, Comput. Phys. Commun. 143, 54–68 (2002). arXiv:hep-ph/0105349

    Article  ADS  MATH  Google Scholar 

  37. T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153–165 (1999). arXiv:hep-ph/9807565

    Article  ADS  Google Scholar 

  38. T. Hahn, M. Rauch, Nucl. Phys. Proc. Suppl. 157, 236–240 (2006). arXiv:hep-ph/0601248

    Article  ADS  Google Scholar 

  39. J.F. Gunion, H.E. Haber, G.L. Kane, S. Dawson, The Higgs Hunter’s Guide (Perseus Publishing, Cambridge, 2000)

    Google Scholar 

  40. J.F. Gunion, H.E. Haber, Phys. Rev. D 67, 075019 (2003). arXiv:hep-ph/0207010

    Article  ADS  Google Scholar 

  41. A.K. Grant, Phys. Rev. D 51, 207–217 (1995). arXiv:hep-ph/9410267

    Article  ADS  Google Scholar 

  42. H.E. Haber, H.E. Logan, Phys. Rev. D 62, 015011 (2000). arXiv:hep-ph/9909335

    Article  ADS  Google Scholar 

  43. K. Cheung, O.C.W. Kong, Phys. Rev. D 68, 053003 (2003). arXiv:hep-ph/0302111

    Article  ADS  Google Scholar 

  44. W. Grimus, L. Lavoura, O.M. Ogreid, P. Osland, J. Phys. G 35, 075001 (2008). arXiv:0711.4022 [hep-ph]

    Article  ADS  Google Scholar 

  45. A. Wahab El Kaffas, P. Osland, O.M. Ogreid, Phys. Rev. D 76, 095001 (2007). arXiv:0706.2997 [hep-ph]

    Article  ADS  Google Scholar 

  46. S. Kanemura, T. Kubota, E. Takasugi, Phys. Lett. B 313, 155–160 (1993). arXiv:hep-ph/9303263

    Article  ADS  Google Scholar 

  47. A.G. Akeroyd, A. Arhrib, E.-M. Naimi, Phys. Lett. B 490, 119–124 (2000). arXiv:hep-ph/0006035

    Article  ADS  Google Scholar 

  48. I.F. Ginzburg, I.P. Ivanov, Phys. Rev. D 72, 115010 (2005). arXiv:hep-ph/0508020

    Article  ADS  Google Scholar 

  49. S. Nie, M. Sher, Phys. Lett. B 449, 89–92 (1999). arXiv:hep-ph/9811234

    Article  ADS  Google Scholar 

  50. S. Kanemura, T. Kasai, Y. Okada, Phys. Lett. B 471, 182–190 (1999). arXiv:hep-ph/9903289

    Article  ADS  Google Scholar 

  51. C. Amsler et al., Phys. Lett. B 667, 1 (2008)

    Article  ADS  Google Scholar 

  52. C.D. Froggatt, R.G. Moorhouse, I.G. Knowles, Phys. Rev. D 45, 2471–2481 (1992)

    Article  ADS  Google Scholar 

  53. W. Grimus, L. Lavoura, O.M. Ogreid, P. Osland, Nucl. Phys. B 801, 81–96 (2008). arXiv:0802.4353 [hep-ph]

    Article  ADS  Google Scholar 

  54. D. Eriksson, J. Rathsman, O. Stal, Comput. Phys. Commun. 181, 189–205 (2010). arXiv:0902.0851 [hep-ph]

    Article  ADS  Google Scholar 

  55. J. Erler, arXiv:1002.1320 [hep-ph]

  56. J. Erler, P. Langacker, arXiv:1003.3211 [hep-ph]

  57. M. Maniatis, A. von Manteuffel, O. Nachtmann, Eur. Phys. J. C 57, 739–762 (2008). arXiv:0711.3760 [hep-ph]

    Article  ADS  Google Scholar 

  58. M. Maniatis, O. Nachtmann, J. High Energy Phys. 05, 028 (2009). arXiv:0901.4341 [hep-ph]

    Article  ADS  Google Scholar 

  59. G.D. Kribs, T. Plehn, M. Spannowsky, T.M.P. Tait, Phys. Rev. D 76, 075016 (2007). arXiv:0706.3718 [hep-ph]

    Article  ADS  Google Scholar 

  60. B. Holdom et al., PMC Phys. A 3, 4 (2009). arXiv:0904.4698 [hep-ph]

    Article  ADS  Google Scholar 

  61. M. Hashimoto, arXiv:1001.4335 [hep-ph]

  62. J. Alwall et al., Eur. Phys. J. C 49, 791–801 (2007). arXiv:hep-ph/0607115

    Article  ADS  Google Scholar 

  63. M. Bobrowski, A. Lenz, J. Riedl, J. Rohrwild, Phys. Rev. D 79, 113006 (2009). arXiv:0902.4883 [hep-ph]

    Article  ADS  Google Scholar 

  64. D. Cox (CDF Collaboration), arXiv:0910.3279 [hep-ex]

  65. T. Aaltonen, et al. (CDF Collaboration), arXiv:0912.1057 [hep-ex]

  66. S. Berge, W. Bernreuther, J. Ziethe, Phys. Rev. Lett. 100, 171605 (2008). arXiv:0801.2297 [hep-ph]

    Article  ADS  Google Scholar 

  67. S. Berge, W. Bernreuther, Phys. Lett. B 671, 470–476 (2009). arXiv:0812.1910 [hep-ph]

    Article  ADS  Google Scholar 

  68. Conference note 5757 (D0 Collaboration), http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/HIGGS/H61/

  69. P.H. Frampton, P.Q. Hung, M. Sher, Phys. Rep. 330, 263 (2000). arXiv:hep-ph/9903387

    Article  ADS  Google Scholar 

  70. F. del Aguila, M. Perez-Victoria, J. Santiago, J. High Energy Phys. 09, 011 (2000). arXiv:hep-ph/0007316

    Article  Google Scholar 

  71. F. del Aguila, M. Perez-Victoria, J. Santiago, Phys. Lett. B 492, 98–106 (2000). arXiv:hep-ph/0007160

    Article  ADS  Google Scholar 

  72. J.A. Aguilar-Saavedra, J. High Energy Phys. 11, 030 (2009). arXiv:0907.3155 [hep-ph]

    Article  ADS  Google Scholar 

  73. T. Appelquist, H.-C. Cheng, B.A. Dobrescu, Phys. Rev. D 64, 035002 (2001). arXiv:hep-ph/0012100

    Article  ADS  Google Scholar 

  74. N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, J. High Energy Phys. 07, 034 (2002). arXiv:hep-ph/0206021

    Article  MathSciNet  ADS  Google Scholar 

  75. W. Bernreuther, P. Gonzalez, M. Wiebusch, arXiv:0909.3772 [hep-ph]

  76. H.K. Dreiner et al., Eur. Phys. J. C 62, 547–572 (2009). arXiv:0901.3485 [hep-ph]

    Article  ADS  Google Scholar 

  77. M. Frank et al., J. High Energy Phys. 02, 047 (2007). arXiv:hep-ph/0611326

    Article  ADS  Google Scholar 

  78. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133–143 (2003). arXiv:hep-ph/0212020

    Article  ADS  Google Scholar 

  79. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343–366 (1999). arXiv:hep-ph/9812472

    ADS  Google Scholar 

  80. C.F. Berger, J.S. Gainer, J.L. Hewett, T.G. Rizzo, J. High Energy Phys. 02, 023 (2009). arXiv:0812.0980 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  81. C.T. Hill, Phys. Lett. B 345, 483–489 (1995). arXiv:hep-ph/9411426

    Article  ADS  Google Scholar 

  82. R.S. Chivukula, B.A. Dobrescu, H. Georgi, C.T. Hill, Phys. Rev. D 59, 075003 (1999). arXiv:hep-ph/9809470

    Article  ADS  Google Scholar 

  83. G. Buchalla, G. Burdman, C.T. Hill, D. Kominis, Phys. Rev. D 53, 5185–5200 (1996). arXiv:hep-ph/9510376

    Article  ADS  Google Scholar 

  84. A.K. Leibovich, D.L. Rainwater, Phys. Rev. D 65, 055012 (2002). arXiv:hep-ph/0110218

    Article  ADS  Google Scholar 

  85. G. Burdman, D. Kominis, Phys. Lett. B 403, 101–107 (1997). arXiv:hep-ph/9702265

    Article  ADS  Google Scholar 

  86. C.-X. Yue, Y.-P. Kuang, X.-L. Wang, W.-B. Li, Phys. Rev. D 62, 055005 (2000). arXiv:hep-ph/0001133

    Article  ADS  Google Scholar 

  87. B. Balaji, Phys. Rev. D 53, 1699–1702 (1996). arXiv:hep-ph/9505313

    Article  ADS  Google Scholar 

  88. G.-H. Wu, Phys. Rev. Lett. 74, 4137–4140 (1995). arXiv:hep-ph/9412206

    Article  ADS  Google Scholar 

  89. A. Belyaev, A. Blum, R.S. Chivukula, E.H. Simmons, Phys. Rev. D 72, 055022 (2005). arXiv:hep-ph/0506086

    Article  ADS  Google Scholar 

  90. G. Burdman, Phys. Rev. Lett. 83, 2888–2891 (1999). arXiv:hep-ph/9905347

    Article  ADS  Google Scholar 

  91. M. Hashimoto, Phys. Rev. D 66, 095015 (2002). arXiv:hep-ph/0201110

    Article  ADS  Google Scholar 

  92. J.-J. Cao, Z.-H. Xiong, J.M. Yang, Phys. Rev. D 67, 071701 (2003). arXiv:hep-ph/0212114

    Article  ADS  Google Scholar 

  93. S. Dimopoulos, S. Raby, G.L. Kane, Nucl. Phys. B 182, 77 (1981)

    Article  ADS  Google Scholar 

  94. J.R. Ellis, M.K. Gaillard, D.V. Nanopoulos, P. Sikivie, Nucl. Phys. B 182, 529–545 (1981)

    Article  ADS  Google Scholar 

  95. R.S. Chivukula, R. Rosenfeld, E.H. Simmons, J. Terning, arXiv:hep-ph/9503202

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Bernreuther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernreuther, W., González, P. & Wiebusch, M. Pseudoscalar Higgs bosons at the LHC: production and decays into electroweak gauge bosons revisited. Eur. Phys. J. C 69, 31–43 (2010). https://doi.org/10.1140/epjc/s10052-010-1335-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1335-1

Keywords

Navigation