Skip to main content
Log in

TeV-scale bileptons, see-saw type II and lepton flavor violation in core-collapse supernova

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Electrons and electron neutrinos in the inner core of the core-collapse supernova are highly degenerate and therefore numerous during a few seconds of explosion. In contrast, leptons of other flavors are non-degenerate and therefore relatively scarce. This is due to lepton flavor conservation. If this conservation law is broken by some non-standard interactions, ν e are converted to ν μ , ν τ , and e are converted to μ. This affects the supernova dynamics and the supernova neutrino signal. We consider lepton flavor violating interactions mediated by scalar bileptons, i.e. heavy scalars with lepton number 2. It is shown that in case of TeV-mass bileptons the electron Fermi gas is equilibrated with non-electron species inside the inner supernova core at a time scale ∼(1–100) ms. In particular, a scalar triplet which generates neutrino masses through the see-saw type II mechanism is considered. It is found that the supernova core is sensitive to yet unprobed values of masses and couplings of the triplet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Magg, C. Wetterich, Phys. Lett. B 94, 61 (1980)

    Article  ADS  Google Scholar 

  2. G. Lazarides, Q. Shafi, C. Wetterich, Nucl. Phys. B 181, 287 (1981)

    Article  ADS  Google Scholar 

  3. R.N. Mohapatra, G. Senjanovic, Phys. Rev. D 23, 165 (1981)

    Article  ADS  Google Scholar 

  4. Z.Z. Xing, Prog. Theor. Phys. Suppl. 180, 112 (2010). arXiv:0905.3903 [hep-ph]

    Article  ADS  Google Scholar 

  5. A. Abada, C. Biggio, F. Bonnet, M.B. Gavela, T. Hambye, J. High Energy Phys. 0712, 061 (2007). arXiv:0707.4058 [hep-ph]

    Article  ADS  Google Scholar 

  6. A.G. Akeroyd, M. Aoki, H. Sugiyama, Phys. Rev. D 77, 075010 (2008). arXiv:0712.4019 [hep-ph]

    Article  ADS  Google Scholar 

  7. P. Fileviez Perez, T. Han, G.Y. Huang, T. Li, K. Wang, Phys. Rev. D 78, 015018 (2008). arXiv:0805.3536 [hep-ph]

    Article  ADS  Google Scholar 

  8. A.G. Akeroyd, M. Aoki, H. Sugiyama, Phys. Rev. D 79, 113010 (2009). arXiv:0904.3640 [hep-ph]

    Article  ADS  Google Scholar 

  9. T.J. Mazurek, in Proceedings of Neutrino, vol. 2, ed. by A. Haatuft, C. Jarlskog, Bergen, 1979, p. 438

  10. E.W. Kolb, D.L. Tubbs, D.A. Dicus, Astrophys. J. 255, L57 (1982)

    Article  ADS  Google Scholar 

  11. G.B. Gelmini, M. Roncadelli, Phys. Lett. B 99, 411 (1981)

    Article  ADS  Google Scholar 

  12. H.A. Bethe, Rev. Mod. Phys. 62, 801 (1990)

    Article  ADS  Google Scholar 

  13. D.K. Nadezhin, Astrophys. Space Sci. 51, 283 (1977)

    Article  ADS  Google Scholar 

  14. D.K. Nadezhin, Astrophys. Space Sci. 53, 131 (1978)

    Article  ADS  Google Scholar 

  15. A. Burrows, J.M. Lattimer, Astrophys. J. 299, L19 (1985)

    Article  ADS  Google Scholar 

  16. G.S. Bisnovatyi-Kogan, S.G. Moiseenko, Phys. Part. Nucl. 39, 1128 (2008)

    Article  Google Scholar 

  17. J.C.-Y. Wang, PhD dissertation, University of Texas at Austin, 1998. See also the home page for Boom code, http://en.wikiversity.org/wiki/BoomCode

  18. K. Sumiyoshi et al., Astrophys. J. 629, 922 (2005). arXiv:astro-ph/0506620v1

    Article  ADS  Google Scholar 

  19. T.A. Thompson, A. Burrows, P.A. Pinto, Astrophys. J. 592, 434 (2003). arXiv:astro-ph/0211194

    Article  ADS  Google Scholar 

  20. A. Burrows, J.M. Lattimer, Astrophys. J. 307, 178 (1986)

    Article  ADS  Google Scholar 

  21. L. Willmann et al., Phys. Rev. Lett. 82, 49 (1999). arXiv:hep-ex/9807011

    Article  ADS  Google Scholar 

  22. C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008)

    Article  ADS  Google Scholar 

  23. F. Cuypers, S. Davidson, Eur. Phys. J. C 2, 503 (1998). arXiv:hep-ph/9609487

    Article  ADS  Google Scholar 

  24. J. Maalampi, A. Pietila, M. Raidal, Phys. Rev. D 48, 4467 (1993)

    Article  ADS  Google Scholar 

  25. M. Raidal, Phys. Rev. D 57, 2013 (1998). arXiv:hep-ph/9706279

    Article  ADS  Google Scholar 

  26. J. Schechter, J.W.F. Valle, Phys. Rev. D 22, 2227 (1980)

    Article  ADS  Google Scholar 

  27. J. Garayoa, T. Schwetz, J. High Energy Phys. 0803, 009 (2008). arXiv:0712.1453 [hep-ph]

    Article  ADS  Google Scholar 

  28. M. Kadastik, M. Raidal, L. Rebane, Phys. Rev. D 77, 115023 (2008) arXiv:0712.3912 [hep-ph]

    Article  ADS  Google Scholar 

  29. M.C. Gonzalez-Garcia, M. Maltoni, Phys. Rep. 460, 1 (2008). arXiv:0704.1800 [hep-ph]

    Article  ADS  Google Scholar 

  30. A.M. Malinovsky, A.A. Voevodkin, V.N. Lukash, E.V. Mikheeva, A.A. Vikhlinin, Astron. Lett. 34, 445 (2008)

    Article  ADS  Google Scholar 

  31. M. Malinsky, T. Ohlsson, H. Zhang, Phys. Rev. D 79, 011301 (2009). arXiv:0811.3346 [hep-ph]

    Article  ADS  Google Scholar 

  32. T. Fukuyama, H. Sugiyama, K. Tsumura, arXiv:0909.4943 [hep-ph]

  33. L. Landau, Nature 141, 333 (1938)

    Article  ADS  Google Scholar 

  34. G.S. Bisnovatyi-Kogan, I.D. Novikov, Neutrino Rest Mass. Soviet Astron. 24, 516 (1980)

    ADS  Google Scholar 

  35. D.K. Nadëzhin, Astron. Zh. 45, 1166 (1968)

    ADS  Google Scholar 

  36. A. Yahil, Astrophys. J. 265, 1047 (1983)

    Article  ADS  Google Scholar 

  37. M.V. Murzina, D.K. Nadyozhin, Astron. Zh. 68, 574 (1991)

    ADS  Google Scholar 

  38. M. Murakami, K. Nishihara, T. Hanawa, Astrophys. J. 607, 879 (2004)

    Article  ADS  Google Scholar 

  39. R.N. Antonova, Y.M. Kazhdan, Astron. Lett. 26, 344 (2000)

    Article  ADS  Google Scholar 

  40. J.M. Lattimer, in Supernova Shells and Their Birth Events, vol. 316 (1988), p. 153

  41. J.M. Lattimer, Nucl. Phys. A 478, 199 (1988)

    Article  ADS  Google Scholar 

  42. J.M. Lattimer, Contemp. Phys. 30, 55 (1989)

    Article  ADS  Google Scholar 

  43. G.G. Raffelt, A.Y. Smirnov, Phys. Rev. D 76, 125008 (2007). arXiv:0709.4641 [hep-ph]

    Article  ADS  Google Scholar 

  44. A.S. Dighe, A.Y. Smirnov, Phys. Rev. D 62, 033007 (2000). arXiv:hep-ph/9907423

    Article  ADS  Google Scholar 

  45. G.S. Bisnovatyi-Kogan, Z.F. Seidov, Soviet Astron. 14, 113 (1970)

    ADS  Google Scholar 

  46. G.S. Bisnovatyi-Kogan, Z.F. Seidov, Astron. Zh. 47, 139 (1970)

    ADS  Google Scholar 

  47. K. Nakazawa, Progr. Theor. Phys. 49, 1932 (1973)

    Article  ADS  Google Scholar 

  48. G.A. Fuller, R.W. Mayle, J.R. Wilson, D.N. Schramm, Astrophys. J. 322, 795 (1987)

    Article  ADS  Google Scholar 

  49. M. Rampp, R. Buras, H.T. Janka, G. Raffelt, in Proceedings of the 11th Worshop on Nuclear Astrophysics, Garching, 2002, ed. by W. Hillebrandt, E. Muller, p. 119. arXiv:astro-ph/0203493

  50. O. Lychkovskiy, in Trudi 51oi nauchnoi konferencii MFTI, chast II, Moscow-Dolgoprudny, 2008, ed. by A.V. Arsenin, p. 90. arXiv:0804.1005 [hep-ph]

  51. O. Lychkovskiy, S. Blinnikov, Phys. Atom. Nucl. 73, 614 (2010). arXiv:0905.3658 [hep-ph]

    Article  ADS  Google Scholar 

  52. P.S. Amanik, G.M. Fuller, B. Grinstein, Astropart. Phys. 24, 160 (2005). arXiv:hep-ph/0407130

    Article  ADS  Google Scholar 

  53. P.S. Amanik, G.M. Fuller, Phys. Rev. D 75, 083008 (2007). arXiv:astro-ph/0606607

    Article  ADS  Google Scholar 

  54. G.V. Domogatsky, Nauchn. Inf. Astron. Council Acad. Sci. USSR 13, 94 (1969)

    ADS  Google Scholar 

  55. L.B. Okun, Yad. Fiz. 10, 358 (1969). [Sov. J. Nucl. Phys. 10, 206 (1969)]

    Google Scholar 

  56. S.I. Blinnikov, A.D. Dolgov, L.B. Okun, M.B. Voloshin, Nucl. Phys. B 458, 52 (1996)

    Article  ADS  Google Scholar 

  57. S.N. Gninenko, Phys. Lett. B 413, 365 (1997). arXiv:hep-ph/9708465

    Article  ADS  Google Scholar 

  58. L.D. Landau, E.M. Lifshits, Statistical Physics (Pergamon, Oxford, 1980)

    Google Scholar 

  59. S.I. Blinnikov, N.V. Dunina-Barkovskaya, D.K. Nadyozhin, Astrophys. J. Suppl. 106, 171 (1996); Erratum: Astrophys. J. Suppl. 118, 603 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Lychkovskiy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lychkovskiy, O., Blinnikov, S. & Vysotsky, M. TeV-scale bileptons, see-saw type II and lepton flavor violation in core-collapse supernova. Eur. Phys. J. C 67, 213–227 (2010). https://doi.org/10.1140/epjc/s10052-010-1291-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1291-9

Keywords

Navigation