Skip to main content
Log in

Hadronic final states in deep-inelastic scattering with Sherpa

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We extend the multi-purpose Monte Carlo event generator Sherpa to include processes in deeply inelastic lepton–nucleon scattering. Hadronic final states in this kinematical setting are characterised by the presence of multiple kinematical scales, which were up to now accounted for only by specific resummations in individual kinematical regions. Using an extension of the recently introduced method for merging truncated parton showers with higher-order tree-level matrix elements, it is possible to obtain predictions which are reliable in all kinematical limits. Different hadronic final states, defined by jets or individual hadrons, in deep-inelastic scattering are analysed and the corresponding results are compared to HERA data. The various sources of theoretical uncertainties of the approach are discussed and quantified. The extension to deeply inelastic processes provides the opportunity to validate the merging of matrix elements and parton showers in multi-scale kinematics inaccessible in other collider environments. It also allows to use HERA data on hadronic final states in the tuning of hadronisation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.N. Gribov, L.N. Lipatov, Deep inelastic ep scattering in perturbation theory. Sov. J. Nucl. Phys. 15, 438–450 (1972)

    Google Scholar 

  2. L.N. Lipatov, The parton model and perturbation theory. Sov. J. Nucl. Phys. 20, 94–102 (1975)

    Google Scholar 

  3. Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e + e annihilation by perturbation theory in quantum chromodynamics. Sov. Phys. JETP 46, 641–653 (1977)

    ADS  Google Scholar 

  4. G. Altarelli, G. Parisi, Asymptotic freedom in parton language. Nucl. Phys. B 126, 298–318 (1977)

    Article  ADS  Google Scholar 

  5. G. Curci, W. Furmanski, R. Petronzio, Evolution of parton densities beyond leading order: the non-singlet case. Nucl. Phys. B 175, 27 (1980)

    Article  ADS  Google Scholar 

  6. W. Furmanski, R. Petronzio, Singlet parton densities beyond leading order. Phys. Lett. B 97, 437 (1980)

    Article  ADS  Google Scholar 

  7. S. Moch, J.A.M. Vermaseren, A. Vogt, The three-loop splitting functions in QCD: the non-singlet case. Nucl. Phys. B 688, 101–134 (2004). arXiv:hep-ph/0403192

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. A. Vogt, S. Moch, J.A.M. Vermaseren, The three-loop splitting functions in QCD: the singlet case. Nucl. Phys. B 691, 129–181 (2004). arXiv:hep-ph/0404111

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189–295 (2009). arXiv:0901.0002 [hep-ph]

    Article  ADS  Google Scholar 

  10. R.D. Ball et al. (NNPDF collaboration), A determination of parton distributions with faithful uncertainty estimation. Nucl. Phys. B 809, 1–63 (2009). arXiv:0808.1231 [hep-ph]

    Article  ADS  Google Scholar 

  11. R.D. Ball et al. (NNPDF collaboration), Precision determination of electroweak parameters and the strange content of the proton from neutrino deep-inelastic scattering. Nucl. Phys. B 823, 195–233 (2009). arXiv:0906.1958 [hep-ph]

    Article  ADS  Google Scholar 

  12. P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables. Phys. Rev. D 78, 013004 (2008). arXiv:0802.0007 [hep-ph]

    ADS  Google Scholar 

  13. P. Jimenez-Delgado, E. Reya, Dynamical NNLO parton distributions. Phys. Rev. D 79, 074023 (2009). arXiv:0810.4274 [hep-ph]

    Article  ADS  Google Scholar 

  14. E.A. Kuraev, L.N. Lipatov, V.S. Fadin, The Pomeranchuk singularity in nonabelian gauge theories. Sov. Phys. JETP 45, 199–204 (1977)

    MathSciNet  ADS  Google Scholar 

  15. I.I. Balitsky, L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics. Sov. J. Nucl. Phys. 28, 822–829 (1978)

    Google Scholar 

  16. M. Ciafaloni, Coherence effects in initial jets at small Q 2/s. Nucl. Phys. B 296, 49–74 (1988)

    Article  ADS  Google Scholar 

  17. S. Catani, F. Fiorani, G. Marchesini, QCD coherence in initial state radiation. Phys. Lett. B 234, 339–345 (1990)

    Article  ADS  Google Scholar 

  18. S. Catani, F. Fiorani, G. Marchesini, Small-x behavior of initial state radiation in perturbative QCD. Nucl. Phys. B 336, 18–85 (1990)

    Article  ADS  Google Scholar 

  19. G. Marchesini, QCD coherence in the structure function and associated distributions at small x. Nucl. Phys. B 445, 49–80 (1995). arXiv:hep-ph/9412327

    Article  MathSciNet  ADS  Google Scholar 

  20. A. Aktas et al. (H1 collaboration), Forward jet production in deep inelastic scattering at HERA. Eur. Phys. J. C 46, 27–42 (2006). arXiv:hep-ex/0508055, DESY-05-135

    Article  ADS  Google Scholar 

  21. S. Chekanov et al. (ZEUS collaboration), Forward-jet production in deep inelastic ep scattering at HERA. Eur. Phys. J. C 52, 515–530 (2007). arXiv:0707.3093 [hep-ex]

    Article  ADS  Google Scholar 

  22. E. Mirkes, D. Zeppenfeld, Dijet production at HERA in next-to-leading order. Phys. Lett. B 380, 205–212 (1996). arXiv:hep-ph/9511448

    Article  ADS  Google Scholar 

  23. S. Catani, M.H. Seymour, The dipole formalism for the calculation of QCD jet cross sections at next-to-leading order. Phys. Lett. B 378, 287–301 (1996). arXiv:hep-ph/9602277

    Article  ADS  Google Scholar 

  24. Z. Nagy, Z. Trocsanyi, Multi jet cross sections in deep inelastic scattering at next-to-leading order. Phys. Rev. Lett. 87, 082001 (2001). arXiv:hep-ph/0104315

    Article  ADS  Google Scholar 

  25. Z. Nagy, Z. Trocsanyi, Three-jet event-shapes in lepton-proton scattering at next-to-leading order accuracy. Phys. Lett. B 634, 498–503 (2006). arXiv:hep-ph/0511328

    Article  ADS  Google Scholar 

  26. A. Aktas et al. (H1 collaboration), Measurement of inclusive jet production in deep-inelastic scattering at high Q 2 and determination of the strong coupling. Phys. Lett. B 653, 134–144 (2007). arXiv:0706.3722 [hep-ex], DESY-07-073

    Article  ADS  Google Scholar 

  27. S. Chekanov et al. (ZEUS collaboration), Inclusive-jet and dijet cross sections in deep inelastic scattering at HERA. Nucl. Phys. B 765, 1–30 (2007). arXiv:hep-ex/0608048

    Article  ADS  Google Scholar 

  28. G.A. Schuler, T. Sjöstrand, A scenario for high-energy γ γ interactions. Z. Phys. C 73, 677–688 (1997). arXiv:hep-ph/9605240

    Article  Google Scholar 

  29. B. Pötter, JetViP 1.1: Calculating one jet and two jet cross-sections with virtual photons in NLO QCD. Comput. Phys. Commun. 119, 45–66 (1999). arXiv:hep-ph/9806437

    Article  ADS  Google Scholar 

  30. G. Kramer, B. Pötter, Forward jet production at small x in next-to-leading order QCD. Phys. Lett. B 453, 295–301 (1999). arXiv:hep-ph/9901314

    Article  ADS  Google Scholar 

  31. M. Bengtsson, T. Sjöstrand, A comparative study of coherent and non-coherent parton shower evolution. Nucl. Phys. B 289, 810 (1987)

    Article  ADS  Google Scholar 

  32. T. Sjöstrand, A model for initial state parton showers. Phys. Lett. B 157, 321 (1985)

    Article  ADS  Google Scholar 

  33. G. Marchesini, B.R. Webber, Simulation of QCD jets including soft gluon interference. Nucl. Phys. B 238, 1 (1984)

    Article  ADS  Google Scholar 

  34. G. Marchesini, B.R. Webber, Monte Carlo simulation of general hard processes with coherent QCD radiation. Nucl. Phys. B 310, 461 (1988)

    Article  ADS  Google Scholar 

  35. T. Sjöstrand, P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions. Eur. Phys. J. C 39, 129–154 (2005). arXiv:hep-ph/0408302

    Article  ADS  Google Scholar 

  36. R. Kuhn, F. Krauss, B. Ivanyi, G. Soff, APACIC++ 1.0: a parton cascade in C++. Comput. Phys. Commun. 134, 223–266 (2001). arXiv:hep-ph/0004270

    Article  MATH  ADS  Google Scholar 

  37. F. Krauss, A. Schälicke, G. Soff, APACIC++ 2.0: a parton cascade in C++. Comput. Phys. Commun. 174, 876–902 (2006). arXiv:hep-ph/0503087

    Article  ADS  Google Scholar 

  38. G. Marchesini, B.R. Webber, Simulation of QCD initial state radiation at small x. Nucl. Phys. B 349, 617–634 (1991)

    Article  ADS  Google Scholar 

  39. G. Marchesini, B.R. Webber, Final states in heavy quark leptoproduction at small x. Nucl. Phys. B 386, 215–235 (1992)

    Article  ADS  Google Scholar 

  40. H. Jung, The CCFM Monte Carlo generator CASCADE. Comput. Phys. Commun. 143, 100–111 (2002). arXiv:hep-ph/0109102

    Article  MATH  ADS  Google Scholar 

  41. K. Golec-Biernat, S. Jadach, W. Płaczek, P. Stephens, M. Skrzypek, Markovian Monte Carlo solutions of the one-loop CCFM equations. Acta Phys. Polon. B 38, 3149–3168 (2007). arXiv:hep-ph/0703317

    ADS  Google Scholar 

  42. L. Lönnblad, Ariadne version 4: a program for simulation of QCD cascades implementing the colour dipole model. Comput. Phys. Commun. 71, 15–31 (1992)

    Article  ADS  Google Scholar 

  43. J.-C. Winter, F. Krauss, Initial-state showering based on colour dipoles connected to incoming parton lines. J. High Energy Phys. 07, 040 (2008). arXiv:0712.3913 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  44. S. Schumann, F. Krauss, A parton shower algorithm based on Catani–Seymour dipole factorisation. J. High Energy Phys. 03, 038 (2008). arXiv:0709.1027 [hep-ph]

    Article  ADS  Google Scholar 

  45. M. Dinsdale, M. Ternick, S. Weinzierl, Parton showers from the dipole formalism. Phys. Rev. D 76, 094003 (2007). arXiv:0709.1026 [hep-ph]

    Article  ADS  Google Scholar 

  46. T. Gleisberg, F. Krauss, A. Schälicke, S. Schumann, J.-C. Winter, Studying W + W production at the Fermilab Tevatron with Sherpa. Phys. Rev. D 72, 034028 (2005). arXiv:hep-ph/0504032

    Article  ADS  Google Scholar 

  47. J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions. Eur. Phys. J. C 53, 473–500 (2008). arXiv:0706.2569 [hep-ph]

    Article  ADS  Google Scholar 

  48. M.L. Mangano, M. Moretti, F. Piccinini, M. Treccani, Matching matrix elements and shower evolution for top-pair production in hadronic collisions. J. High Energy Phys. 01, 013 (2007). arXiv:hep-ph/0611129

    Article  ADS  Google Scholar 

  49. J. Alwall, S. de Visscher, F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC. J. High Energy Phys. 02, 017 (2009). arXiv:0810.5350 [hep-ph]

    Article  ADS  Google Scholar 

  50. S. Catani, F. Krauss, R. Kuhn, B.R. Webber, QCD matrix elements + parton showers. J. High Energy Phys. 11, 063 (2001). arXiv:hep-ph/0109231

    Article  ADS  Google Scholar 

  51. F. Krauss, Matrix elements and parton showers in hadronic interactions. J. High Energy Phys. 0208, 015 (2002). arXiv:hep-ph/0205283

    Article  ADS  Google Scholar 

  52. M.L. Mangano, M. Moretti, R. Pittau, Multijet matrix elements and shower evolution in hadronic collisions: \(Wb\bar{b}+n\)-jets as a case study. Nucl. Phys. B 632, 343–362 (2002). arXiv:hep-ph/0108069

    Article  ADS  Google Scholar 

  53. S. Höche, F. Krauss, S. Schumann, F. Siegert, QCD matrix elements and truncated showers. J. High Energy Phys. 05, 053 (2009). arXiv:0903.1219 [hep-ph]

    Article  Google Scholar 

  54. K. Hamilton, P. Richardson, J. Tully, A modified CKKW matrix element merging approach to angular-ordered parton showers. J. High Energy Phys. 11, 038 (2009). arXiv:0905.3072 [hep-ph]

    Article  ADS  Google Scholar 

  55. T. Gleisberg, S. Höche, F. Krauss, A. Schälicke, S. Schumann, J. Winter, Sherpa 1.α, a proof-of-concept version. J. High Energy Phys. 02, 056 (2004). arXiv:hep-ph/0311263

    Article  ADS  Google Scholar 

  56. T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, J. Winter, Event generation with Sherpa 1.1. J. High Energy Phys. 02, 007 (2009). arXiv:0811.4622 [hep-ph]

    Article  ADS  Google Scholar 

  57. B. Andersson, G. Gustafson, G. Ingelman, T. Sjöstrand, Parton fragmentation and string dynamics. Phys. Rep. 97, 31–145 (1983)

    Article  ADS  Google Scholar 

  58. B. Andersson, The Lund model. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 7 (1997)

  59. R.D. Field, S. Wolfram, A QCD model for e + e annihilation. Nucl. Phys. B 213, 65 (1983)

    Article  ADS  Google Scholar 

  60. T.D. Gottschalk, An improved description of hadronization in the QCD cluster model for e + e annihilation. Nucl. Phys. B 239, 349 (1984)

    Article  ADS  Google Scholar 

  61. B.R. Webber, A QCD model for jet fragmentation including soft gluon interference. Nucl. Phys. B 238, 492 (1984)

    Article  ADS  Google Scholar 

  62. F. Krauss, J.-C. Winter, Sherpa’s new hadronisation model, in preparation

  63. J.-C. Winter, F. Krauss, G. Soff, A modified cluster-hadronisation model. Eur. Phys. J. C 36, 381–395 (2004). arXiv:hep-ph/0311085

    Article  ADS  Google Scholar 

  64. T. Plehn, D. Rainwater, P. Skands, Squark and gluino production with jets. Phys. Lett. B 645, 217–221 (2007). arXiv:hep-ph/0510144

    Article  ADS  Google Scholar 

  65. Y.L. Dokshitzer, G. Marchesini, G.P. Salam, Revisiting parton evolution and the large-x limit. Phys. Lett. B 634, 504–507 (2006). arXiv:hep-ph/0511302

    Article  ADS  Google Scholar 

  66. Y.L. Dokshitzer, A new look for good old parton dynamics. arXiv:0911.0847 [hep-ph]

  67. S. Catani, M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD. Nucl. Phys. B 485, 291–419 (1997). arXiv:hep-ph/9605323

    Article  ADS  Google Scholar 

  68. S. Catani, S. Dittmaier, M.H. Seymour, Z. Trocsanyi, The dipole formalism for next-to-leading order QCD calculations with massive partons. Nucl. Phys. B 627, 189–265 (2002). arXiv:hep-ph/0201036

    Article  MATH  ADS  Google Scholar 

  69. S. Plätzer, S. Gieseke, Coherent parton showers with local recoils. arXiv:0909.5593 [hep-ph]

  70. S. Höche, S. Schumann, F. Siegert, Hard photon production and matrix-element parton-shower merging. Phys. Rev. D 81, 034026(2010). arXiv:0912.3501 [hep-ph]

    Article  ADS  Google Scholar 

  71. S. Catani, Y.L. Dokshitzer, B.R. Webber, The k clustering algorithm for jets in deep inelastic scattering and hadron collisions. Phys. Lett. B 285, 291–299 (1992)

    Article  ADS  Google Scholar 

  72. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, Antenna subtraction at NNLO. J. High Energy Phys. 09, 056 (2005). arXiv:hep-ph/0505111

    Article  ADS  Google Scholar 

  73. A. Daleo, T. Gehrmann, D. Maitre, Antenna subtraction with hadronic initial states. J. High Energy Phys. 04, 016 (2007). arXiv:hep-ph/0612257

    Article  ADS  Google Scholar 

  74. W.T. Giele, D.A. Kosower, P.Z. Skands, A simple shower and matching algorithm. Phys. Rev. D 78, 026 (2008). arXiv:0707.3652 [hep-ph]

    Article  Google Scholar 

  75. L. Lönnblad, Correcting the colour-dipole cascade model with fixed order matrix elements. J. High Energy Phys. 05, 046 (2002). arXiv:hep-ph/0112284

    Article  Google Scholar 

  76. N. Lavesson, L. Lönnblad, Extending CKKW-merging to one-loop matrix elements. J. High Energy Phys. 12, 070 (2008). arXiv:0811.2912 [hep-ph]

    Article  ADS  Google Scholar 

  77. F. Krauss, A. Schälicke, S. Schumann, G. Soff, Simulating W/Z+jets production at the Tevatron. Phys. Rev. D 70, 114009 (2004). arXiv:hep-ph/0409106

    Article  ADS  Google Scholar 

  78. A. Schälicke, F. Krauss, Implementing the ME + PS merging algorithm. J. High Energy Phys. 07, 018 (2005). arXiv:hep-ph/0503281

    Article  ADS  Google Scholar 

  79. N. Brook, R.G. Waugh, T. Carli, R. Mohr, M. Sutton, Tuning Monte Carlo event generators to HERA data, in Hamburg 1995/96, Future Physics at HERA, vol. 1, pp. 613–619

  80. N.H. Brook et al., A comparison of deep inelastic scattering Monte Carlo event generators to HERA data, in Hamburg 1998/1999, Monte Carlo generators for HERA Physics, pp. 10–35. arXiv:hep-ex/9912053

  81. T. Gleisberg, S. Höche, Comix, a new matrix element generator. J. High Energy Phys. 12, 039 (2008). arXiv:0808.3674 [hep-ph]

    Article  ADS  Google Scholar 

  82. T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. J. High Energy Phys. 05, 026 (2006). arXiv:hep-ph/0603175

    Article  ADS  Google Scholar 

  83. A. Buckley, H. Hoeth, H. Lacker, H. Schulz, J.E. von Seggern, Systematic event generator tuning for the LHC. arXiv:0907.2973 [hep-ph]

  84. F. Krauss, T. Laubrich, F. Siegert, Simulation of hadron decays in Sherpa, in preparation

  85. M. Schönherr, F. Krauss, Soft photon radiation in particle decays in Sherpa. J. High Energy Phys. 12, 018 (2008). arXiv:0810.5071 [hep-ph]

    Article  ADS  Google Scholar 

  86. B.M. Waugh et al., HZTool and Rivet: Toolkit and framework for the comparison of simulated final states and data at colliders. arXiv:hep-ph/0605034

  87. C. Adloff et al. (H1 collaboration), Measurement of inclusive jet cross-sections in deep-inelastic ep scattering at HERA. Phys. Lett. B 542, 193–206 (2002). arXiv:hep-ex/0206029, DESY-02-079

    Article  ADS  Google Scholar 

  88. S.D. Ellis, D.E. Soper, Successive combination jet algorithm for hadron collisions. Phys. Rev. D 48, 3160–3166 (1993). arXiv:hep-ph/9305266

    Article  ADS  Google Scholar 

  89. S. Catani, Y.L. Dokshitzer, M.H. Seymour, B.R. Webber, Longitudinally-invariant k -clustering algorithms for hadron–hadron collisions. Nucl. Phys. B 406, 187–224 (1993)

    Article  ADS  Google Scholar 

  90. C. Adloff et al. (H1 collaboration), Measurement and QCD analysis of jet cross sections in deep-inelastic positron-proton collisions at \(\sqrt{s}\) of 300 GeV. Eur. Phys. J. C 19, 289–311 (2001). arXiv:hep-ex/0010054, DESY-00-145

    Article  ADS  Google Scholar 

  91. S. Frixione, G. Ridolfi, Jet photoproduction at HERA. Nucl. Phys. B 507, 315–333 (1997). arXiv:hep-ph/9707345

    Article  ADS  Google Scholar 

  92. A. Aktas et al. (H1 collaboration), Inclusive dijet production at low Bjørken-x in deep inelastic scattering. Eur. Phys. J. C 33, 477–493 (2004). arXiv:hep-ex/0310019, DESY-03-160

    Article  ADS  Google Scholar 

  93. C. Adloff et al. (H1 collaboration), Three-jet production in deep-inelastic scattering at HERA. Phys. Lett. B 515, 17–29 (2001). arXiv:hep-ex/0106078, DESY-01-073

    Article  ADS  Google Scholar 

  94. S. Abachi et al. (D0 collaboration), Studies of topological distributions of the three- and four-jet events in \(\bar{p}p\) collisions at \(\sqrt{s}=1800\) GeV with the D0 detector. Phys. Rev. D 53, 6000–6016 (1996). arXiv:hep-ex/9509005

    Article  ADS  Google Scholar 

  95. C. Adloff et al. (H1 collaboration), Measurement of internal jet structure in dijet production in deep-inelastic scattering at HERA. Nucl. Phys. B 545, 3–20 (1999). arXiv:hep-ex/9901010, DESY-98-210

    Article  ADS  Google Scholar 

  96. L.A. Del Pozo, Tests of QCD from jet and hadron production at LEP. PhD Thesis, University of Cambridge (1993). RALT-002

  97. R. Akers et al. (OPAL collaboration), QCD studies using a cone-based jet finding algorithm for e + e collisions at LEP. Z. Phys. C 63, 197–212 (1994)

    Article  ADS  Google Scholar 

  98. M. Kuhlen, Hadronic final states in deeply inelastic scattering, in Proceedings of the workshop on DIS and QCD—DIS95 (Paris, 1995). arXiv:hep-ex/9508014

  99. J.F. Laporte, Y. Sirois, A. Edin, G. Ingelman, J. Rathsman, Soft colour interactions as the origin of rapidity gaps in DIS. Phys. Lett. B 366, 371–378 (1996). arXiv:hep-ph/9508386

    Article  ADS  Google Scholar 

  100. A. Edin, G. Ingelman, J. Rathsman, Unified description of rapidity gaps and energy flows in DIS final states. Z. Phys. C 75, 57–70 (1997). arXiv:hep-ph/9605281

    Article  Google Scholar 

  101. C. Adloff et al. (H1 collaboration), Measurements of transverse energy flow in deep-inelastic scattering at HERA. Eur. Phys. J. C 12, 595–607 (2000). arXiv:hep-ex/9907027, DESY-99-091

    Article  ADS  Google Scholar 

  102. C. Adloff et al. (H1 collaboration), Measurement of charged particle transverse momentum spectra in deep inelastic scattering. Nucl. Phys. B 485, 3–24 (1997). arXiv:hep-ex/9610006, DESY-96-215

    Article  ADS  Google Scholar 

  103. M. Kuhlen, A new method to probe the low-x parton dynamics at HERA. Phys. Lett. B 382, 441–446 (1996). arXiv:hep-ph/9606246

    Article  ADS  Google Scholar 

  104. M. Kuhlen, High-p T particles in the forward region at HERA. arXiv:hep-ex/9610004

  105. S. Aid et al. (H1 collaboration), Charged particle multiplicities in deep inelastic scattering at HERA. Z. Phys. C 72, 573–592 (1996). arXiv:hep-ex/9608011, DESY-96-160

    Article  ADS  Google Scholar 

  106. R. Kleiss, From two to three jets in heavy boson decays: an algorithmic approach. Phys. Lett. B 180, 400 (1986)

    Article  ADS  Google Scholar 

  107. M.H. Seymour, A simple prescription for first-order corrections to quark scattering and annihilation processes. Nucl. Phys. B 436, 443–460 (1995). arXiv:hep-ph/9410244

    Article  ADS  Google Scholar 

  108. S. Alekhin, Parton distributions from deep-inelastic-scattering data. Phys. Rev. D 68, 014002 (2003). arXiv:hep-ph/0211096

    Article  ADS  Google Scholar 

  109. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P. Nadolsky, W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis. J. High Energy Phys. 0207, 012 (2002). arXiv:hep-ph/0201195

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Höche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carli, T., Gehrmann, T. & Höche, S. Hadronic final states in deep-inelastic scattering with Sherpa . Eur. Phys. J. C 67, 73–97 (2010). https://doi.org/10.1140/epjc/s10052-010-1261-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1261-2

Keywords

Navigation