The European Physical Journal C

, Volume 66, Issue 3–4, pp 359–372 | Cite as

Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass

  • Robert V. Harlander
  • Hendrik Mantler
  • Simone Marzani
  • Kemal J. Ozeren
Regular Article - Theoretical Physics

Abstract

The inclusive Higgs production cross section from gluon fusion is calculated through NNLO QCD, including its top quark mass dependence. This is achieved through a matching of the 1/Mt expansion of the partonic cross sections to the exact large-\(\hat{s}\) limits which are derived from kT-factorization. The accuracy of this procedure is estimated to be better than 1% for the hadronic cross section. The final result is shown to be within 1% of the commonly used effective theory approach, thus confirming earlier findings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Djouadi, The anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model. Phys. Rep. 457, 1 (2008). hep-ph/0503172 CrossRefADSGoogle Scholar
  2. 2.
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II: The Higgs bosons in the minimal supersymmetric model. Phys. Rep. 459, 1 (2008). hep-ph/0503173 CrossRefADSGoogle Scholar
  3. 3.
    S. Dawson, Radiative corrections to Higgs boson production. Nucl. Phys. B 359, 283 (1991) CrossRefADSGoogle Scholar
  4. 4.
    D. Graudenz, M. Spira, P.M. Zerwas, QCD corrections to Higgs boson production at proton-proton colliders. Phys. Rev. Lett. 70, 1372 (1993) CrossRefADSGoogle Scholar
  5. 5.
    M. Spira, A. Djouadi, D. Graudenz, P.M. Zerwas, Higgs boson production at the LHC. Nucl. Phys. B 453, 17 (1995). hep-ph/9504378 CrossRefADSGoogle Scholar
  6. 6.
    Y. Schröder, M. Steinhauser, Four-loop decoupling relations for the strong coupling. J. High Energy Phys. 0601, 051 (2006). hep-ph/0512058 CrossRefADSGoogle Scholar
  7. 7.
    K.G. Chetyrkin, J.H. Kühn, C. Sturm, QCD decoupling at four loops. Nucl. Phys. B 744, 121 (2006). hep-ph/0512060 MATHCrossRefADSGoogle Scholar
  8. 8.
    M. Spira, HIGLU: a program for the calculation of the total Higgs production cross section at hadron colliders via gluon fusion including QCD corrections. hep-ph/9510347
  9. 9.
    R.V. Harlander, W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders. Phys. Rev. Lett. 88, 201801 (2002). hep-ph/0201206 CrossRefADSGoogle Scholar
  10. 10.
    C. Anastasiou, K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD. Nucl. Phys. B 646, 220 (2002). hep-ph/0207004 CrossRefADSGoogle Scholar
  11. 11.
    V. Ravindran, J. Smith, W.L. van Neerven, NNLO corrections to the total cross section for Higgs boson production in hadron–hadron collisions. Nucl. Phys. B 665, 325 (2003). hep-ph/0302135 CrossRefADSGoogle Scholar
  12. 12.
    R. Harlander, Higgs production at the large hadron collider: theoretical status. J. Phys. G 35, 033001 (2008) CrossRefADSGoogle Scholar
  13. 13.
    R.V. Harlander, K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order. J. High Energy Phys. 0911, 088 (2009). arXiv:0909.3420 CrossRefADSGoogle Scholar
  14. 14.
    R.V. Harlander, K.J. Ozeren, Top mass effects in Higgs production at next-to-next-to-leading order QCD: virtual corrections. Phys. Lett. B 679, 467 (2009). arXiv:0907.2997 CrossRefADSGoogle Scholar
  15. 15.
    A. Pak, M. Rogal, M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC. arXiv:0911.4662
  16. 16.
    A. Pak, M. Rogal, M. Steinhauser, Virtual three-loop corrections to Higgs boson production in gluon fusion for finite top quark mass. Phys. Lett. B 679, 473 (2009). arXiv:0907.2998 CrossRefADSGoogle Scholar
  17. 17.
    S. Marzani, R.D. Ball, V. Del Duca, S. Forte, A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order. Nucl. Phys. B 800, 127 (2008). arXiv:0801.2544 MATHCrossRefADSGoogle Scholar
  18. 18.
    R. Harlander, P. Kant, Higgs production and decay: analytic results at next-to-leading order QCD. J. High Energy Phys. 0512, 015 (2005). hep-ph/0509189 CrossRefADSGoogle Scholar
  19. 19.
    C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo, Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop. J. High Energy Phys. 0701, 082 (2007). hep-ph/0611236 CrossRefADSGoogle Scholar
  20. 20.
    U. Aglietti, R. Bonciani, G. Degrassi, A. Vicini, Analytic results for virtual QCD corrections to Higgs production and decay. J. High Energy Phys. 0701, 021 (2007). hep-ph/0611266 CrossRefADSGoogle Scholar
  21. 21.
    S. Catani, M. Ciafaloni, F. Hautmann, High-energy factorization and small x heavy flavor production. Nucl. Phys. B 366, 135 (1991) CrossRefADSGoogle Scholar
  22. 22.
    R.D. Ball, R.K. Ellis, Heavy quark production at high energy. Comput. Phys. Commun. 0105, 053 (2001). hep-ph/0101199 Google Scholar
  23. 23.
    G. Camici, M. Ciafaloni, k-factorization and small-x anomalous dimensions. Nucl. Phys. B 496, 305 (1997) CrossRefADSGoogle Scholar
  24. 24.
    G. Camici, M. Ciafaloni, k-factorization and small-x anomalous dimensions. Nucl. Phys. B 607, 431 (2001) CrossRefADSGoogle Scholar
  25. 25.
    S. Catani, F. Hautmann, High-energy factorization and small x deep inelastic scattering beyond leading order. Nucl. Phys. B 427, 475 (1994) CrossRefADSGoogle Scholar
  26. 26.
    S. Marzani, R.D. Ball, High energy resummation of Drell–Yan processes. Nucl. Phys. B 814, 246 (2009). arXiv:0812.3602 CrossRefADSGoogle Scholar
  27. 27.
    G. Diana, High-energy resummation in direct photon production. Nucl. Phys. B 824, 154 (2010). arXiv:0906.4159 CrossRefADSGoogle Scholar
  28. 28.
    F. Hautmann, Heavy top limit and double-logarithmic contributions to Higgs production at \(m_{H}^{2}/s\ll1\). Phys. Lett. B 535, 159 (2002). hep-ph/0203140 CrossRefADSGoogle Scholar
  29. 29.
    S. Marzani, R.D. Ball, V. Del Duca, S. Forte, A. Vicini, Finite-top-mass effects in NNLO Higgs production. Nucl. Phys. Proc. Suppl. 186, 98 (2009). arXiv:0809.4934 CrossRefADSGoogle Scholar
  30. 30.
    R. Kirschner, M. Segond, Small x resummation in collinear factorisation. arXiv:0910.5443
  31. 31.
    R.K. Ellis, G. Zanderighi, Scalar one-loop integrals for QCD. J. High Energy Phys. 0802, 002 (2008). arXiv:0712.1851 CrossRefADSGoogle Scholar
  32. 32.
    The TEVNPH Working Group, Combined CDF and D0 upper limits on standard model Higgs boson production with 2.1–5.4 fb−1 of data. FERMILAB-CONF-09-557-E, CDF Note 9998, D0 Note 5983 Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  • Robert V. Harlander
    • 1
  • Hendrik Mantler
    • 1
  • Simone Marzani
    • 2
  • Kemal J. Ozeren
    • 1
  1. 1.Fachbereich CBergische Universität WuppertalWuppertalGermany
  2. 2.School of Physics & AstronomyUniversity of ManchesterManchesterUK

Personalised recommendations