Skip to main content
Log in

Asymptotic safety of simple Yukawa systems

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study the triviality and hierarchy problem of a Z 2-invariant Yukawa system with massless fermions and a real scalar field, serving as a toy model for the standard-model Higgs sector. Using the functional RG, we look for UV stable fixed points which could render the system asymptotically safe. Whether a balancing of fermionic and bosonic contributions in the RG flow induces such a fixed point depends on the algebraic structure and the degrees of freedom of the system. Within the region of parameter space which can be controlled by a nonperturbative next-to-leading order derivative expansion of the effective action, we find no non-Gaußian fixed point in the case of one or more fermion flavors. The fermion-boson balancing can still be demonstrated within a model system with a small fractional flavor number in the symmetry-broken regime. The UV behavior of this small-N f system is controlled by a conformal Higgs expectation value. The system has only two physical parameters, implying that the Higgs mass can be predicted. It also naturally explains the heavy mass of the top quark, since there are no RG trajectories connecting the UV fixed point with light top masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.G. Wilson, J.B. Kogut, Phys. Rep. 12, 75 (1974)

    Article  ADS  Google Scholar 

  2. M. Luscher, P. Weisz, Nucl. Phys. B 295, 65 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Luscher, P. Weisz, Nucl. Phys. B 318, 705 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Hasenfratz, K. Jansen, C.B. Lang, T. Neuhaus, H. Yoneyama, Phys. Lett. B 199, 531 (1987)

    ADS  Google Scholar 

  5. U.M. Heller, H. Neuberger, P.M. Vranas, Nucl. Phys. B 399, 271 (1993). arXiv:hep-lat/9207024

    Article  ADS  Google Scholar 

  6. D.J.E. Callaway, Phys. Rep. 167, 241 (1988)

    Article  ADS  Google Scholar 

  7. O.J. Rosten, arXiv:0808.0082 [hep-th]

  8. L.D. Landau, in Niels Bohr and the Development of Physics, ed. by W. Pauli (Pergamon, London, 1955)

    Google Scholar 

  9. M. Gell-Mann, F.E. Low, Phys. Rev. 95, 1300 (1954)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. M. Goeckeler, R. Horsley, V. Linke, P. Rakow, G. Schierholz, H. Stuben, Phys. Rev. Lett. 80, 4119 (1998)

    Article  ADS  Google Scholar 

  11. M. Goeckeler, R. Horsley, V. Linke, P. Rakow, G. Schierholz, H. Stuben, Nucl. Phys. Proc. Suppl. 63, 694 (1998)

    Article  ADS  Google Scholar 

  12. H. Gies, J. Jaeckel, Phys. Rev. Lett. 93, 110405 (2004). arXiv:hep-ph/0405183

    Article  ADS  Google Scholar 

  13. N. Cabibbo, L. Maiani, G. Parisi, R. Petronzio, Nucl. Phys. B 158, 295 (1979)

    Article  ADS  Google Scholar 

  14. L. Maiani, G. Parisi, R. Petronzio, Nucl. Phys. B 136, 115 (1978)

    Article  ADS  Google Scholar 

  15. J. Kuti, L. Lin, Y. Shen, Phys. Rev. Lett. 61, 678 (1988)

    Article  ADS  Google Scholar 

  16. T. Hambye, K. Riesselmann, Phys. Rev. D 55, 7255 (1997). arXiv:hep-ph/9610272

    ADS  Google Scholar 

  17. Z. Fodor, K. Holland, J. Kuti, D. Nogradi, C. Schroeder, PoS LAT2007, 056 (2007). arXiv:0710.3151 [hep-lat]

    Google Scholar 

  18. P. Gerhold, K. Jansen, J. Kallarackal, arXiv:0810.4447 [hep-lat]

  19. F.J. Yndurain, in Ann Arbor 1991, Proceedings, Gauge theories—past and future, 337–353

  20. S. Weinberg, in C76-07-23.1 HUTP-76/160, Erice Subnucl. Phys., 1 (1976)

  21. R. Percacci, arXiv:0709.3851 [hep-th]

  22. B. Rosenstein, B.J. Warr, S.H. Park, Phys. Rev. Lett. 62, 1433 (1989)

    Article  ADS  Google Scholar 

  23. K. Gawedzki, A. Kupiainen, Phys. Rev. Lett. 55, 363 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  24. C. de Calan, P.A. Faria da Veiga, J. Magnen, R. Seneor, Phys. Rev. Lett. 66, 3233 (1991)

    Article  ADS  Google Scholar 

  25. A. Codello, R. Percacci, arXiv:0810.0715 [hep-th]

  26. M. Reuter, Phys. Rev. D 57, 971 (1998). arXiv:hep-th/9605030

    Article  MathSciNet  ADS  Google Scholar 

  27. O. Lauscher, M. Reuter, Phys. Rev. D 65, 025013 (2002). arXiv:hep-th/0108040

    MathSciNet  ADS  Google Scholar 

  28. O. Lauscher, M. Reuter, Class. Quantum Gravity 19, 483 (2002). arXiv:hep-th/0110021

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. W. Souma, Prog. Theor. Phys. 102, 181 (1999). arXiv:hep-th/9907027

    Article  MathSciNet  ADS  Google Scholar 

  30. P. Forgacs, M. Niedermaier, arXiv:hep-th/0207028

  31. R. Percacci, D. Perini, Phys. Rev. D 67, 081503 (2003). arXiv:hep-th/0207033

    ADS  Google Scholar 

  32. A. Codello, R. Percacci, C. Rahmede, Int. J. Mod. Phys. A 23, 143 (2008). arXiv:0705.1769 [hep-th]

    Article  ADS  Google Scholar 

  33. R. Percacci, D. Perini, Phys. Rev. D 68, 044018 (2003). arXiv:hep-th/0304222

    ADS  Google Scholar 

  34. H. Gies, Phys. Rev. D 68, 085015 (2003). arXiv:hep-th/0305208

    ADS  Google Scholar 

  35. H. Gies, J. Jaeckel, C. Wetterich, Phys. Rev. D 69, 105008 (2004). arXiv:hep-ph/0312034

    ADS  Google Scholar 

  36. J.M. Schwindt, C. Wetterich, arXiv:0812.4223 [hep-th]

  37. S. Bornholdt, C. Wetterich, Phys. Lett. B 282(3–4), 399 (1992)

    ADS  Google Scholar 

  38. C. Wetterich, Phys. Lett. B 301, 90 (1993)

    ADS  Google Scholar 

  39. K. Aoki, Int. J. Mod. Phys. B 14, 1249 (2000)

    MathSciNet  ADS  Google Scholar 

  40. J. Berges, N. Tetradis, C. Wetterich, Phys. Rep. 363, 223 (2002)

    MATH  MathSciNet  ADS  Google Scholar 

  41. D.F. Litim, J.M. Pawlowski, in The Exact Renormalization Group, ed. by Krasnitz, et al. (World Scientific, Singapore, 1999), p. 168

    Google Scholar 

  42. J. Polonyi, Cent. Eur. J. Phys. 1, 1 (2004)

    Article  Google Scholar 

  43. J.M. Pawlowski, Ann. Phys. 322, 2831 (2007). arXiv:hep-th/0512261

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. H. Gies, arXiv:hep-ph/0611146

  45. B. Delamotte, arXiv:cond-mat/0702365

  46. H. Gies, C. Gneiting, in preparation

  47. C. Gneiting, Diploma thesis, Heidelberg (2005)

  48. L. Rosa, P. Vitale, C. Wetterich, Phys. Rev. Lett. 86, 958 (2001). arXiv:hep-th/0007093

    Article  ADS  Google Scholar 

  49. F. Hofling, C. Nowak, C. Wetterich, Phys. Rev. B 66, 205111 (2002). arXiv:cond-mat/0203588

    Article  ADS  Google Scholar 

  50. D.F. Litim, Phys. Lett. B 486, 92 (2000). hep-th/0005245

    ADS  Google Scholar 

  51. D.F. Litim, Phys. Rev. D 64, 105007 (2001). hep-th/0103195

    ADS  Google Scholar 

  52. D.U. Jungnickel, C. Wetterich, Phys. Rev. D 53, 5142 (1996). arXiv:hep-ph/9505267

    ADS  Google Scholar 

  53. B.J. Schaefer, H.J. Pirner, Nucl. Phys. A 660, 439 (1999). arXiv:nucl-th/9903003

    Article  ADS  Google Scholar 

  54. H. Gies, C. Wetterich, Phys. Rev. D 65, 065001 (2002). arXiv:hep-th/0107221

    MathSciNet  ADS  Google Scholar 

  55. H. Gies, C. Wetterich, Phys. Rev. D 69, 025001 (2004). arXiv:hep-th/0209183

    ADS  Google Scholar 

  56. J. Braun, arXiv:0810.1727 [hep-ph]

  57. M.C. Birse, B. Krippa, J.A. McGovern, N.R. Walet, Phys. Lett. B 605, 287 (2005). arXiv:hep-ph/0406249

    ADS  Google Scholar 

  58. S. Diehl, H. Gies, J.M. Pawlowski, C. Wetterich, Phys. Rev. A 76, 053627 (2007). arXiv:cond-mat/0703366

    Article  ADS  Google Scholar 

  59. S. Diehl, H. Gies, J.M. Pawlowski, C. Wetterich, Phys. Rev. A 76, 21602 (2007). arXiv:cond-mat/0701198 (Rap. Comm.)

    Article  ADS  Google Scholar 

  60. S. Floerchinger, M. Scherer, S. Diehl, C. Wetterich, arXiv:0808.0150 [cond-mat.supr-con]

  61. K. Halpern, K. Huang, Phys. Rev. D 53, 3252 (1996). arXiv:hep-th/9510240

    ADS  Google Scholar 

  62. K. Halpern, K. Huang, Phys. Rev. Lett. 74, 3526 (1995). arXiv:hep-th/9406199

    Article  ADS  Google Scholar 

  63. H. Gies, Phys. Rev. D 63, 065011 (2001). arXiv:hep-th/0009041

    ADS  Google Scholar 

  64. T.R. Morris, Nucl. Phys. B 458, 477 (1996). arXiv:hep-th/9508017

    Article  ADS  Google Scholar 

  65. V.A. Miransky, M. Tanabashi, K. Yamawaki, Mod. Phys. Lett. A 4, 1043 (1989)

    Article  ADS  Google Scholar 

  66. V.A. Miransky, M. Tanabashi, K. Yamawaki, Phys. Lett. B 221, 177 (1989)

    ADS  Google Scholar 

  67. W.A. Bardeen, C.N. Leung, S.T. Love, Phys. Rev. Lett. 56, 1230 (1986)

    Article  ADS  Google Scholar 

  68. J. Zinn-Justin, Nucl. Phys. B 367, 105 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  69. A. Hasenfratz, P. Hasenfratz, K. Jansen, J. Kuti, Y. Shen, Nucl. Phys. B 365, 79 (1991)

    Article  ADS  Google Scholar 

  70. M.B. Halpern, W. Siegel, Phys. Rev. D 16, 2486 (1977)

    ADS  Google Scholar 

  71. H. Gies, J. Sanchez-Guillen, R.A. Vazquez, J. High Energy Phys. 0508, 067 (2005). arXiv:hep-th/0505275

    Article  MathSciNet  ADS  Google Scholar 

  72. J. Smit, Nucl. Phys. Proc. Suppl. 17, 3 (1990)

    Article  ADS  Google Scholar 

  73. J. Shigemitsu, Nucl. Phys. Proc. Suppl. 20, 515 (1991)

    Article  ADS  Google Scholar 

  74. K. Jansen, Phys. Rep. 273, 1 (1996). arXiv:hep-lat/9410018

    Article  MathSciNet  Google Scholar 

  75. I.H. Lee, J. Shigemitsu, R.E. Shrock, Nucl. Phys. B 334, 265 (1990)

    Article  ADS  Google Scholar 

  76. I.H. Lee, J. Shigemitsu, R.E. Shrock, Nucl. Phys. B 330, 225 (1990)

    Article  ADS  Google Scholar 

  77. R.E. Shrock, in Quantum Fields on the Computer, ed. by M. Creutz (ed.) (World Scientific, Singapore, 1992), pp. 150–210

    Google Scholar 

  78. P. Gerhold, K. Jansen, J. High Energy Phys. 0710, 001 (2007). arXiv:0707.3849 [hep-lat]

    Article  ADS  Google Scholar 

  79. P. Gerhold, K. Jansen, J. High Energy Phys. 0709, 041 (2007). arXiv:0705.2539 [hep-lat]

    Article  ADS  Google Scholar 

  80. K. Jansen, J. Kuti, C. Liu, Phys. Lett. B 309, 119 (1993). arXiv:hep-lat/9305003

    ADS  Google Scholar 

  81. K. Jansen, J. Kuti, C. Liu, Phys. Lett. B 309, 127 (1993). arXiv:hep-lat/9305004

    ADS  Google Scholar 

  82. H. Gies, S. Rechenberger, M.M. Scherer, arXiv:0907.0327 [hep-th]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Gies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gies, H., Scherer, M.M. Asymptotic safety of simple Yukawa systems. Eur. Phys. J. C 66, 387–402 (2010). https://doi.org/10.1140/epjc/s10052-010-1256-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1256-z

Keywords

Navigation