The European Physical Journal C

, Volume 66, Issue 3–4, pp 525–583 | Cite as

From the LHC to future colliders

CERN Theory Institute summary report
  • A. De Roeck
  • J. Ellis
  • C. Grojean
  • S. Heinemeyer
  • K. Jakobs
  • G. Weiglein
  • J. Wells
  • G. Azuelos
  • S. Dawson
  • B. Gripaios
  • T. Han
  • J. Hewett
  • M. Lancaster
  • C. Mariotti
  • F. Moortgat
  • G. Moortgat-Pick
  • G. Polesello
  • S. Riemann
  • M. Schumacher
  • K. Assamagan
  • P. Bechtle
  • M. Carena
  • G. Chachamis
  • K. F. Chen
  • S. De Curtis
  • K. Desch
  • M. Dittmar
  • H. Dreiner
  • M. Dührssen
  • B. Foster
  • M. T. Frandsen
  • A. Giammanco
  • R. Godbole
  • S. Gopalakrishna
  • P. Govoni
  • J. Gunion
  • W. Hollik
  • W. S. Hou
  • G. Isidori
  • A. Juste
  • J. Kalinowski
  • A. Korytov
  • E. Kou
  • S. Kraml
  • M. Krawczyk
  • A. Martin
  • D. Milstead
  • V. Morton-Thurtle
  • K. Moenig
  • B. Mele
  • E. Ozcan
  • M. Pieri
  • T. Plehn
  • L. Reina
  • E. Richter-Was
  • T. Rizzo
  • K. Rolbiecki
  • F. Sannino
  • M. Schram
  • J. Smillie
  • S. Sultansoy
  • J. Tattersall
  • P. Uwer
  • B. Webber
  • P. Wienemann
Review

Abstract

Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb−1 of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb−1 of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, the Working Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tevatron New Phenomena and Higgs Working group (CDF Collaboration, D0 Collaboration), arXiv:0903.4001 [hep-ex]
  2. 2.
    G. Aad et al. (The ATLAS Collaboration), arXiv:0901.0512
  3. 3.
    G.L. Bayatian et al. (CMS Collaboration), J. Phys. G 34, 995 (2007) ADSGoogle Scholar
  4. 4.
    A. Bredenstein, A. Denner, S. Dittmaier, S. Pozzorini, J. High Energy Phys. 0808, 108 (2008). arXiv:0807.1248 [hep-ph] ADSGoogle Scholar
  5. 5.
    A. Bredenstein, A. Denner, S. Dittmaier, S. Pozzorini, arXiv:0905.0110 [hep-ph]
  6. 6.
  7. 7.
  8. 8.
    K. Assamagan, talk given at the LHC2FC workshop. CERN, February 2009 Google Scholar
  9. 9.
    CDF Collaboration and D0 Collaboration, arXiv:0903.4001 [hep-ex]
  10. 10.
    G. Bernardi, talk given at LeptonPhoton 2009, see: http://indico.desy.de/contributionDisplay.py?contribId=15&confId=1761
  11. 11.
    R. Barate et al. (LEP Working Group for Higgs boson searches and ALEPH Collaboration, and DELPHI Collaboration, and L3 Collaboration, and OPAL Collaboration), Phys. Lett. B 565, 61 (2003). arXiv:hep-ex/0306033 ADSGoogle Scholar
  12. 12.
    S. Schael et al. (ALEPH Collaboration and DELPHI Collaboration and L3 Collaboration and OPAL Collaboration), Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042 ADSGoogle Scholar
  13. 13.
    M. Dührssen, S. Heinemeyer, H. Logan, D. Rainwater, G. Weiglein, D. Zeppenfeld, Phys. Rev. D 70, 113009 (2004). arXiv:hep-ph/0406323 ADSGoogle Scholar
  14. 14.
    J.M. Butterworth, A.R. Davison, M. Rubin, G.P. Salam, Phys. Rev. Lett. 100, 242001 (2008). arXiv:0802.2470 [hep-ph] ADSGoogle Scholar
  15. 15.
    E. Gabrielli, F. Maltoni, B. Mele, M. Moretti, F. Piccinini, R. Pittau, Nucl. Phys. B 781, 64 (2007). arXiv:hep-ph/0702119 MATHADSGoogle Scholar
  16. 16.
    D.L. Rainwater, Phys. Lett. B 503, 320 (2001). arXiv:hep-ph/0004119 ADSGoogle Scholar
  17. 17.
    A. Ballestrero, G. Bevilacqua, E. Maina, J. High Energy Phys. 0808, 059 (2008). arXiv:0806.4075 [hep-ph] ADSGoogle Scholar
  18. 18.
    R. Lafaye, T. Plehn, M. Rauch, D. Zerwas, M. Dührssen, arXiv:0904.3866 [hep-ph]
  19. 19.
    M. Dührssen, ATL-PHYS-2003-030. Available from cdsweb.cern.ch
  20. 20.
    C. Ruwiedel, N. Wermes, M. Schumacher, Eur. Phys. J. C 51, 385 (2007) ADSGoogle Scholar
  21. 21.
    V. Hankele, G. Klamke, D. Zeppenfeld, T. Figy, Phys. Rev. D 74, 095001 (2006). arXiv:hep-ph/0609075 ADSGoogle Scholar
  22. 22.
    T. Plehn, D.L. Rainwater, D. Zeppenfeld, Phys. Rev. Lett. 88, 051801 (2002). arXiv:hep-ph/0105325 ADSGoogle Scholar
  23. 23.
    F. Gianotti et al., Eur. Phys. J. C 39, 293 (2005). arXiv:hep-ph/0204087 ADSGoogle Scholar
  24. 24.
    G. Aarons et al. (ILC Collaboration), arXiv:0709.1893 [hep-ph]
  25. 25.
    H. Braun et al. (CLIC Study Team Collaboration), CLIC 2008 parameters, CERN-OPEN-2008-021, CLIC-Note-764 Google Scholar
  26. 26.
    W. Scandale, F. Zimmermann, Nucl. Phys. Proc. Suppl. 177–178, 207 (2008) Google Scholar
  27. 27.
    G. Ambrosio et al. (VLHC Design Study Group), Design study for a staged very large hadron collider. See: tdserver1.fnal.gov/tddoc/DesignStudyReport/upload/PDF/
  28. 28.
  29. 29.
  30. 30.
    B. Autin, A. Blondel, J.R. Ellis et al., Prospective study of muon storage rings at CERN, CERN-99-02 Google Scholar
  31. 31.
    R. Raja et al. (Neutrino Factory and Muon Collider Collaboration), arXiv:hep-ex/0108041
  32. 32.
    C. Blochinger et al., arXiv:hep-ph/0202199
  33. 33.
    U. Baur, T. Plehn, D.L. Rainwater, Phys. Rev. D 69, 053004 (2004). arXiv:hep-ph/0310056 ADSGoogle Scholar
  34. 34.
    F. Mazzucato, A. Blondel, A. Clark, ATL-PHYS-2002-029. Available from cdsweb.cern.ch
  35. 35.
    S.Y. Choi, D.J. Miller, M.M. Muhlleitner, P.M. Zerwas, Phys. Lett. B 553, 61 (2003). arXiv:hep-ph/0210077 ADSGoogle Scholar
  36. 36.
    R.M. Godbole, D.J. Miller, M.M. Muhlleitner, J. High Energy Phys. 0712, 031 (2007). arXiv:0708.0458 [hep-ph] ADSGoogle Scholar
  37. 37.
    P.S. Bhupal Dev, A. Djouadi, R.M. Godbole, M.M. Muhlleitner, S.D. Rindani, Phys. Rev. Lett. 100, 051801 (2008). arXiv:0707.2878 [hep-ph] ADSGoogle Scholar
  38. 38.
    C.P. Buszello, I. Fleck, P. Marquard, J.J. van der Bij, Eur. Phys. J. C 32, 209 (2004). arXiv:hep-ph/0212396 ADSGoogle Scholar
  39. 39.
    K. Jakobs, Eur. Phys. J. C 59, 463 (2009) ADSGoogle Scholar
  40. 40.
    J.A. Aguilar-Saavedra et al. (ECFA/DESY LC Physics Working Group), arXiv:hep-ph/0106315. See tesla.desy.de/new_pages/TDR_CD/start.html
  41. 41.
    J. Brau et al., International Linear Collider reference design report. 1: Executive summary. 2: Physics at the ILC. 3: Accelerator. 4: Detectors Google Scholar
  42. 42.
    S. Heinemeyer et al., arXiv:hep-ph/0511332
  43. 43.
    T. Behnke et al. Intended ILD Letter of Intent. See: www.ilcild.org/documents/ild-letter-of-intent/LOI.pdf/view
  44. 44.
    K. Ackermann et al., Extended joint ECFA/DESY study on physics and detector for a linear e+e collider, in Proceedings, Summer Colloquium, Amsterdam, Netherlands, April 4, 2003 Google Scholar
  45. 45.
    A. Gay, Eur. Phys. J. C 49, 489 (2007). arXiv:hep-ph/0604034 MathSciNetADSGoogle Scholar
  46. 46.
    A. Imhof, LC-PHSM-2006-001 (2006). See: www.desy.de/~lcnotes/notes.html
  47. 47.
    J. Erler, S. Heinemeyer, W. Hollik, G. Weiglein, P.M. Zerwas, Phys. Lett. B 486, 125 (2000). arXiv:hep-ph/0005024 ADSGoogle Scholar
  48. 48.
    H. Flacher, M. Goebel, J. Haller, A. Hocker, K. Moenig, J. Stelzer, arXiv:0811.0009 [hep-ph]
  49. 49.
    N.T. Meyer, K. Desch, Eur. Phys. J. C 35, 171 (2004) ADSGoogle Scholar
  50. 50.
    M. Battaglia, arXiv:hep-ph/0211461
  51. 51.
    R. Hawkings, K. Monig, Eur. Phys. J. Direct C 1, 8 (1999). arXiv:hep-ex/9910022 Google Scholar
  52. 52.
    G. Wilson, LC-PHSM-2001-009. See: www.desy.de/~lcnotes/notes.html
  53. 53.
    O. Buchmueller et al., Phys. Lett. B 657, 87 (2007). arXiv:0707.3447 [hep-ph] ADSGoogle Scholar
  54. 54.
    B. Badelek et al. (ECFA/DESY Photon Collider Working Group), Int. J. Mod. Phys. A 19, 5097 (2004) arXiv:hep-ex/0108012 ADSGoogle Scholar
  55. 55.
    E. Accomando et al. (CLIC Physics Working Group), arXiv:hep-ph/0412251
  56. 56.
    M. Battaglia, E. Boos, W.M. Yao, arXiv:hep-ph/0111276
  57. 57.
    M. Battaglia, J. Phys. G 35, 095005 (2008). arXiv:0807.1299 [hep-ex] ADSGoogle Scholar
  58. 58.
    M. Goebel, Talk given at Rencontres de Moriond EW 2009 Google Scholar
  59. 59.
  60. 60.
    ATLAS Collaboration, Detector and Physics Performance Technical Design Report, CERN/LHCC/99-15 (1999). See: atlasinfo.cern.ch/Atlas/GROUPS/PHYSICS/TDR/access.html
  61. 61.
    V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf, G. Shaughnessy, Phys. Rev. D 77, 035005 (2008). arXiv:0706.4311 [hep-ph] ADSGoogle Scholar
  62. 62.
    S. Dawson, W. Yan, arXiv:0904.2005 [hep-ph]
  63. 63.
    G. Cacciapaglia, A. Deandrea, J. Llodra-Perez, arXiv:0901.0927 [hep-ph]
  64. 64.
    I.F. Ginzburg, M. Krawczyk, P. Osland, arXiv:hep-ph/0101208
  65. 65.
    M. Schram, Talk given at the LHC2FC workshop, CERN, February 2009 Google Scholar
  66. 66.
    G.F. Giudice, C. Grojean, A. Pomarol, R. Rattazzi, J. High Energy Phys. 0706, 045 (2007). arXiv:hep-ph/0703164 ADSGoogle Scholar
  67. 67.
    N. Amapane et al. CMS Note 2007/005. Available from cdsweb.cern.ch
  68. 68.
    P. Govoni (CMS Collaboration), AIP Conf. Proc. 1078, 229 (2009) Google Scholar
  69. 69.
    M.S. Carena, J.R. Ellis, A. Pilaftsis, C.E.M. Wagner, Phys. Lett. B 495, 155 (2000). arXiv:hep-ph/0009212 ADSGoogle Scholar
  70. 70.
    V. Buescher, K. Jakobs, Int. J. Mod. Phys. A 20, 2523 (2005). arXiv:hep-ph/0504099 Google Scholar
  71. 71.
    M. Schumacher, Czech. J. Phys. 54, A103 (2004). arXiv:hep-ph/0410112 Google Scholar
  72. 72.
    E. Accomando et al., arXiv:hep-ph/0608079
  73. 73.
    R. Dermisek, J.F. Gunion, Phys. Rev. Lett. 95, 041801 (2005). arXiv:hep-ph/0502105 ADSGoogle Scholar
  74. 74.
    R. Dermisek, J.F. Gunion, Phys. Rev. D 73, 111701 (2006). arXiv:hep-ph/0510322 ADSGoogle Scholar
  75. 75.
    A. Djouadi, Phys. Lett. B 435, 101 (1998). arXiv:hep-ph/9806315 ADSGoogle Scholar
  76. 76.
    A.V. Manohar, M.B. Wise, Phys. Lett. B 636, 107 (2006). arXiv:hep-ph/0601212 ADSGoogle Scholar
  77. 77.
    G.F. Giudice, R. Rattazzi, J.D. Wells, Nucl. Phys. B 595, 250 (2001). arXiv:hep-ph/0002178 MATHMathSciNetADSGoogle Scholar
  78. 78.
    T. Binoth, J.J. van der Bij, Z. Phys. C 75, 17 (1997). arXiv:hep-ph/9608245 Google Scholar
  79. 79.
    J.R. Espinosa, J.F. Gunion, Phys. Rev. Lett. 82, 1084 (1999). arXiv:hep-ph/9807275 ADSGoogle Scholar
  80. 80.
    S. Chang, R. Dermisek, J.F. Gunion, N. Weiner, Ann. Rev. Nucl. Part. Sci. 58, 75 (2008). arXiv:0801.4554 [hep-ph] ADSGoogle Scholar
  81. 81.
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, arXiv:0811.4169 [hep-ph]
  82. 82.
    K.E. Williams, G. Weiglein, Phys. Lett. B 660, 217 (2008). arXiv:0710.5320 [hep-ph] ADSGoogle Scholar
  83. 83.
    D.K. Ghosh, R.M. Godbole, D.P. Roy, Phys. Lett. B 628, 131 (2005). arXiv:hep-ph/0412193 ADSGoogle Scholar
  84. 84.
    P. Bandyopadhyay, A. Datta, A. Datta, B. Mukhopadhyaya, Phys. Rev. D 78, 015017 (2008). arXiv:0710.3016 [hep-ph] ADSGoogle Scholar
  85. 85.
    J.R. Forshaw, J.F. Gunion, L. Hodgkinson, A. Papaefstathiou, A.D. Pilkington, J. High Energy Phys. 0804, 090 (2008). arXiv:0712.3510 [hep-ph] Google Scholar
  86. 86.
    R. Dermisek, J.F. Gunion, Phys. Rev. D 79, 055014 (2009). arXiv:0811.3537 [hep-ph] ADSGoogle Scholar
  87. 87.
    V.D. Barger, M.S. Berger, J.F. Gunion, T. Han, Phys. Rep. 286, 1 (1997). arXiv:hep-ph/9602415 ADSGoogle Scholar
  88. 88.
    O.J.P. Eboli, D. Zeppenfeld, Phys. Lett. B 495, 147 (2000). arXiv:hep-ph/0009158 ADSGoogle Scholar
  89. 89.
    M. Schumacher, Investigation of invisible decays of the Higgs boson at a future e + e linear collider. LC-PHSM-2003-096 Google Scholar
  90. 90.
    H. Davoudiasl, T. Han, H.E. Logan, Phys. Rev. D 71, 115007 (2005). arXiv:hep-ph/0412269 ADSGoogle Scholar
  91. 91.
    W. Lohmann, M. Ohlerich, A. Raspereza, A. Schalicke, arXiv:0710.2602 [hep-ex]
  92. 92.
    K. Belotsky, V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 36, 503 (2004). arXiv:hep-ph/0406037 ADSGoogle Scholar
  93. 93.
    F. Sannino, K. Tuominen, Phys. Rev. D 71, 051901 (2005). arXiv:hep-ph/0405209 ADSGoogle Scholar
  94. 94.
    D.D. Dietrich, F. Sannino, Phys. Rev. D 75, 085018 (2007). arXiv:hep-ph/0611341 MathSciNetADSGoogle Scholar
  95. 95.
    A. Belyaev, R. Foadi, M.T. Frandsen, M. Jarvinen, F. Sannino, A. Pukhov, Phys. Rev. D 79, 035006 (2009). arXiv:0809.0793 [hep-ph] ADSGoogle Scholar
  96. 96.
    T. Appelquist, F. Sannino, Phys. Rev. D 59, 067702 (1999). arXiv:hep-ph/9806409 ADSGoogle Scholar
  97. 97.
    N.D. Christensen, R. Shrock, Phys. Lett. B 632, 92 (2006). arXiv:hep-ph/0509109 ADSGoogle Scholar
  98. 98.
    G.H. Brooijmans et al., arXiv:0802.3715 [hep-ph]
  99. 99.
    E. Eichten, K.D. Lane, J. Womersley, Phys. Lett. B 405, 305 (1997). arXiv:hep-ph/9704455 ADSGoogle Scholar
  100. 100.
    K. Lane, A. Martin, arXiv:0907.3737 [hep-ph]
  101. 101.
    M.E. Peskin, T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990) ADSGoogle Scholar
  102. 102.
    R. Barbieri, G. Isidori, V.S. Rychkov, E. Trincherini, Phys. Rev. D 78, 036012 (2008). arXiv:0806.1624 [hep-ph] ADSGoogle Scholar
  103. 103.
    R. Foadi, F. Sannino, Phys. Rev. D 78, 037701 (2008). arXiv:0801.0663 [hep-ph] ADSGoogle Scholar
  104. 104.
    R. Foadi, M. Jarvinen, F. Sannino, Phys. Rev. D 79, 035010 (2009). arXiv:0811.3719 [hep-ph] ADSGoogle Scholar
  105. 105.
    A. Belyaev, arXiv:0711.1919 [hep-ph]
  106. 106.
    O. Cata, G. Isidori, J.F. Kamenik, arXiv:0905.0490 [hep-ph]
  107. 107.
    T. Ohl, C. Speckner, Phys. Rev. D 78, 095008 (2008). arXiv:0809.0023 [hep-ph] ADSGoogle Scholar
  108. 108.
    G. Cacciapaglia, A. Deandrea, S. De Curtis, arXiv:0906.3417 [hep-ph]
  109. 109.
    J. Hirn, A. Martin, V. Sanz, J. High Energy Phys. 0805, 084 (2008). arXiv:0712.3783 [hep-ph] ADSGoogle Scholar
  110. 110.
    J. Hirn, A. Martin, V. Sanz, Phys. Rev. D 78, 075026 (2008). arXiv:0807.2465 [hep-ph] ADSGoogle Scholar
  111. 111.
    K. Agashe, C. Csaki, C. Grojean, M. Reece, J. High Energy Phys. 0712, 003 (2007). arXiv:0704.1821 [hep-ph] ADSGoogle Scholar
  112. 112.
    R. Casalbuoni, S. De Curtis, D. Dolce, D. Dominici, Phys. Rev. D 71, 075015 (2005). arXiv:hep-ph/0502209 ADSGoogle Scholar
  113. 113.
    R. Casalbuoni, S. De Curtis, D. Dominici, R. Gatto, Phys. Lett. B 155, 95 (1985) ADSGoogle Scholar
  114. 114.
    E. Accomando, S. De Curtis, D. Dominici, L. Fedeli, arXiv:0807.5051 [hep-ph]
  115. 115.
    E. Accomando, M. Battaglia, S. De Curtis, D. Dominici, L. Fedeli (in preparation) Google Scholar
  116. 116.
    M. Battaglia, S. De Curtis, D. Dominici, J. High Energy Phys. 0212, 004 (2002). arXiv:hep-ph/0210351 ADSGoogle Scholar
  117. 117.
    N. Amapane et al., CMS An-2007/005 Google Scholar
  118. 118.
    J.M. Butterworth, B.E. Cox, J.R. Forshaw, Phys. Rev. D 65, 096014 (2002). arXiv:hep-ph/0201098 ADSGoogle Scholar
  119. 119.
    E. Accomando, A. Ballestrero, S. Bolognesi, E. Maina, C. Mariotti, J. High Energy Phys. 0603, 093 (2006). arXiv:hep-ph/0512219 ADSGoogle Scholar
  120. 120.
    A. Ballestrero, A. Belhouari, G. Bevilacqua, V. Kashkan, E. Maina, Comput. Phys. Commun. 180, 401 (2009). arXiv:0801.3359 [hep-ph] ADSGoogle Scholar
  121. 121.
    A. Ballestrero, G. Bevilacqua, E. Maina, arXiv:0812.5084 [hep-ph]
  122. 122.
    T. Appelquist, C.W. Bernard, Phys. Rev. D 22, 200 (1980) ADSGoogle Scholar
  123. 123.
    J. Bagger, S. Dawson, G. Valencia, Nucl. Phys. B 399, 364 (1993). arXiv:hep-ph/9204211 ADSGoogle Scholar
  124. 124.
    G. Weiglein et al., Phys. Rep. 426, 47 (2006). arXiv:hep-ph/0410364 Google Scholar
  125. 125.
    A.S. Belyaev et al., Phys. Rev. D 59, 015022 (1999). arXiv:hep-ph/9805229 ADSGoogle Scholar
  126. 126.
    O.J.P. Eboli, M.C. Gonzalez-Garcia, J.K. Mizukoshi, Phys. Rev. D 74, 073005 (2006). arXiv:hep-ph/0606118 ADSGoogle Scholar
  127. 127.
    A. Dobado, M.J. Herrero, J.R. Pelaez, E. Ruiz Morales, Phys. Rev. D 62, 055011 (2000). arXiv:hep-ph/9912224 ADSGoogle Scholar
  128. 128.
    CMS Collaboration, CMS Physics Analysis Summary JME-07-001 (2007) Google Scholar
  129. 129.
    C. Cojocaru et al. (ATLAS Liquid Argon EMEC/HEC Collaboration), Nucl. Instrum. Methods A 531, 481 (2004). arXiv:physics/0407009 ADSGoogle Scholar
  130. 130.
    CMS Collaboration, CMS Physics Analysis Summary JME-09-010 (2009). See cms-physics.web.cern.ch/cms-physics/public/JME-09-010-pas.pdf
  131. 131.
    CMS Collaboration, CMS Physics Analysis Summary PFT-09-001 (2009). See cms-physics.web.cern.ch/cms-physics/public/PFT-09-001-pas.pdf
  132. 132.
    R. Adolphi et al. (CMS Collaboration), J. Instrum. 0803, S08004 (2008), J. Instrum. 3 (2008) S08004 Google Scholar
  133. 133.
    F.E. Paige, arXiv:hep-ph/9609373
  134. 134.
    I. Hinchliffe, F.E. Paige, M.D. Shapiro, J. Soderqvist, W. Yao, Phys. Rev. D 55, 5520 (1997). arXiv:hep-ph/9610544 ADSGoogle Scholar
  135. 135.
    H. Bachacou, I. Hinchliffe, F.E. Paige, Phys. Rev. D 62, 015009 (2000). arXiv:hep-ph/9907518 ADSGoogle Scholar
  136. 136.
    K.T. Matchev, F. Moortgat, L. Pape, M. Park, arXiv:0906.2417 [hep-ph]
  137. 137.
    M.M. Nojiri, G. Polesello, D.R. Tovey, arXiv:hep-ph/0312317
  138. 138.
    K. Kawagoe, M.M. Nojiri, G. Polesello, Phys. Rev. D 71, 035008 (2005). arXiv:hep-ph/0410160 ADSGoogle Scholar
  139. 139.
    H.C. Cheng, D. Engelhardt, J.F. Gunion, Z. Han, B. McElrath, Phys. Rev. Lett. 100, 252001 (2008). arXiv:0802.4290 [hep-ph] ADSGoogle Scholar
  140. 140.
    H.C. Cheng, J.F. Gunion, Z. Han, B. McElrath, Phys. Rev. D 80, 035020 (2009). arXiv:0905.1344 [hep-ph] ADSGoogle Scholar
  141. 141.
    H.C. Cheng, J.F. Gunion, Z. Han, G. Marandella, B. McElrath, J. High Energy Phys. 0712, 076 (2007). arXiv:0707.0030 [hep-ph] ADSGoogle Scholar
  142. 142.
    B.C. Allanach et al. (Beyond the Standard Model Working Group), arXiv:hep-ph/0402295
  143. 143.
    B. Webber, arXiv:0907.5307 [hep-ph]
  144. 144.
    T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 77, 112001 (2008). arXiv:0708.3642 [hep-ex] ADSGoogle Scholar
  145. 145.
    C.G. Lester, D.J. Summers, Phys. Lett. B 463, 99 (1999). arXiv:hep-ph/9906349 ADSGoogle Scholar
  146. 146.
    A. Barr, C. Lester, P. Stephens, J. Phys. G 29, 2343 (2003). arXiv:hep-ph/0304226 ADSGoogle Scholar
  147. 147.
    CDF Collaboration, Simultaneous Template-Based Top Quark Mass Measurement in the Lepton+Jets and Dilepton Channels Using 3 fb−1 of CDF Data. CDF note 9769 (2009) Google Scholar
  148. 148.
    W.S. Cho, K. Choi, Y.G. Kim, C.B. Park, Phys. Rev. Lett. 100, 171801 (2008). arXiv:0709.0288 [hep-ph] ADSGoogle Scholar
  149. 149.
    B. Gripaios, J. High Energy Phys. 0802, 053 (2008). arXiv:0709.2740 [hep-ph] ADSGoogle Scholar
  150. 150.
    A.J. Barr, B. Gripaios, C.G. Lester, J. High Energy Phys. 0802, 014 (2008). arXiv:0711.4008 [hep-ph] ADSGoogle Scholar
  151. 151.
    W.S. Cho, K. Choi, Y.G. Kim, C.B. Park, J. High Energy Phys. 0802, 035 (2008). arXiv:0711.4526 [hep-ph] ADSGoogle Scholar
  152. 152.
    M. Serna, J. High Energy Phys. 0806, 004 (2008). arXiv:0804.3344 [hep-ph] ADSGoogle Scholar
  153. 153.
    M. Burns, K. Kong, K.T. Matchev, M. Park, J. High Energy Phys. 0903, 143 (2009). arXiv:0810.5576 [hep-ph] ADSGoogle Scholar
  154. 154.
    H.C. Cheng, Z. Han, J. High Energy Phys. 0812, 063 (2008). arXiv:0810.5178 [hep-ph] ADSGoogle Scholar
  155. 155.
    L. Randall, D. Tucker-Smith, Phys. Rev. Lett. 101, 221803 (2008). arXiv:0806.1049 [hep-ph] ADSGoogle Scholar
  156. 156.
    A.J. Barr, C. Gwenlan, arXiv:0907.2713 [hep-ph]
  157. 157.
    C. Lester, A. Barr, J. High Energy Phys. 0712, 102 (2007). arXiv:0708.1028 [hep-ph] ADSGoogle Scholar
  158. 158.
    G.G. Ross, M. Serna, Phys. Lett. B 665, 212 (2008). arXiv:0712.0943 [hep-ph] ADSGoogle Scholar
  159. 159.
    A.J. Barr, G.G. Ross, M. Serna, Phys. Rev. D 78, 056006 (2008). arXiv:0806.3224 [hep-ph] ADSGoogle Scholar
  160. 160.
    A.J. Barr, B. Gripaios, C.G. Lester, J. High Energy Phys. 0907, 072 (2009). arXiv:0902.4864 [hep-ph] ADSGoogle Scholar
  161. 161.
    L.T. Wang, I. Yavin, Int. J. Mod. Phys. A 23, 4647 (2008). arXiv:0802.2726 [hep-ph] ADSGoogle Scholar
  162. 162.
    A.J. Barr, Phys. Lett. B 596, 205 (2004). arXiv:hep-ph/0405052 ADSGoogle Scholar
  163. 163.
    T. Goto, K. Kawagoe, M.M. Nojiri, Phys. Rev. D 70, 075016 (2004), [Erratum-ibid. D 71, 059902 (2005)]. arXiv:hep-ph/0406317 ADSGoogle Scholar
  164. 164.
    J.M. Smillie, B.R. Webber, J. High Energy Phys. 0510, 069 (2005). arXiv:hep-ph/0507170 ADSGoogle Scholar
  165. 165.
    A. Datta, K. Kong, K.T. Matchev, Phys. Rev. D 72, 096006 (2005), [Erratum-ibid. D 72, 119901 (2005)]. arXiv:hep-ph/0509246 ADSGoogle Scholar
  166. 166.
    C. Athanasiou, C.G. Lester, J.M. Smillie, B.R. Webber, J. High Energy Phys. 0608, 055 (2006). arXiv:hep-ph/0605286 ADSGoogle Scholar
  167. 167.
    M. Burns, K. Kong, K.T. Matchev, M. Park, J. High Energy Phys. 0810, 081 (2008). arXiv:0808.2472 [hep-ph] ADSGoogle Scholar
  168. 168.
    O. Gedalia, S.J. Lee, G. Perez, Phys. Rev. D 80, 035012 (2009). arXiv:0901.4438 [hep-ph] ADSGoogle Scholar
  169. 169.
    L.T. Wang, I. Yavin, J. High Energy Phys. 0704, 032 (2007). arXiv:hep-ph/0605296 ADSGoogle Scholar
  170. 170.
    A.J. Barr, J. High Energy Phys. 0602, 042 (2006). arXiv:hep-ph/0511115 ADSGoogle Scholar
  171. 171.
    M. Battaglia, A. Datta, A. De Roeck, K. Kong, K.T. Matchev, J. High Energy Phys. 0507, 033 (2005). arXiv:hep-ph/0502041 ADSGoogle Scholar
  172. 172.
    M. Battaglia, A.K. Datta, A. De Roeck, K. Kong, K.T. Matchev, arXiv:hep-ph/0507284
  173. 173.
    G. Bhattacharyya, P. Dey, A. Kundu, A. Raychaudhuri, Phys. Lett. B 628, 141 (2005). arXiv:hep-ph/0502031 ADSGoogle Scholar
  174. 174.
    M.R. Buckley, S.Y. Choi, K. Mawatari, H. Murayama, Phys. Lett. B 672, 275 (2009). arXiv:0811.3030 [hep-ph] ADSGoogle Scholar
  175. 175.
    F. Boudjema, R.K. Singh, J. High Energy Phys. 0907, 028 (2009). arXiv:0903.4705 [hep-ph] ADSGoogle Scholar
  176. 176.
    A. Alves, O. Eboli, T. Plehn, Phys. Rev. D 74, 095010 (2006). arXiv:hep-ph/0605067 ADSGoogle Scholar
  177. 177.
    M. Kramer, E. Popenda, M. Spira, P.M. Zerwas, arXiv:0902.3795 [hep-ph]
  178. 178.
    C. Csaki, J. Heinonen, M. Perelstein, J. High Energy Phys. 0710, 107 (2007). arXiv:0707.0014 [hep-ph] ADSGoogle Scholar
  179. 179.
    W.S. Cho, K. Choi, Y.G. Kim, C.B. Park, Phys. Rev. D 79, 031701 (2009). arXiv:0810.4853 [hep-ph] ADSGoogle Scholar
  180. 180.
    A. Datta, G.L. Kane, M. Toharia, arXiv:hep-ph/0510204
  181. 181.
    G.L. Kane, A.A. Petrov, J. Shao, L.T. Wang, arXiv:0805.1397 [hep-ph]
  182. 182.
    G. Hallenbeck, M. Perelstein, C. Spethmann, J. Thom, J. Vaughan, arXiv:0812.3135 [hep-ph]
  183. 183.
    M. Perelstein, A. Weiler, J. High Energy Phys. 0903, 141 (2009). arXiv:0811.1024 [hep-ph] ADSGoogle Scholar
  184. 184.
    M. Perelstein, C. Spethmann, arXiv:0710.4148 [hep-ph]
  185. 185.
    R.M. Godbole, M. Guchait, D.P. Roy, Phys. Lett. B 618, 193 (2005). arXiv:hep-ph/0411306 ADSGoogle Scholar
  186. 186.
    M. Guchait, D.P. Roy, Phys. Lett. B 541, 356 (2002). arXiv:hep-ph/0205015 ADSGoogle Scholar
  187. 187.
    S.Y. Choi, K. Hagiwara, Y.G. Kim, K. Mawatari, P.M. Zerwas, Phys. Lett. B 648, 207 (2007). arXiv:hep-ph/0612237 ADSGoogle Scholar
  188. 188.
    T. Nattermann, K. Desch, P. Wienemann, C. Zendler, J. High Energy Phys. 0904, 057 (2009). arXiv:0903.0714 [hep-ph] ADSGoogle Scholar
  189. 189.
    J.A. Aguilar-Saavedra et al., Eur. Phys. J. C 46, 43 (2006). arXiv:hep-ph/0511344 ADSGoogle Scholar
  190. 190.
    K. Rolbiecki, J. Tattersall, G. Moortgat-Pick, arXiv:0909.3196 [hep-ph]
  191. 191.
    N. Arkani-Hamed, P. Schuster, N. Toro, J. Thaler, L.T. Wang, B. Knuteson, S. Mrenna, arXiv:hep-ph/0703088
  192. 192.
    R. Lafaye, T. Plehn, D. Zerwas, arXiv:hep-ph/0404282
  193. 193.
    P. Bechtle, K. Desch, P. Wienemann, Comput. Phys. Commun. 174, 47 (2006). arXiv:hep-ph/0412012 ADSGoogle Scholar
  194. 194.
    O. Buchmueller et al., J. High Energy Phys. 0809, 117 (2008). arXiv:0808.4128 [hep-ph] ADSGoogle Scholar
  195. 195.
    O. Buchmueller et al., arXiv:0907.5568 [hep-ph]
  196. 196.
    B.C. Allanach, C.G. Lester, Phys. Rev. D 73, 015013 (2006). arXiv:hep-ph/0507283 ADSGoogle Scholar
  197. 197.
    B.C. Allanach, C.G. Lester, A.M. Weber, J. High Energy Phys. 0612, 065 (2006). arXiv:hep-ph/0609295 MathSciNetADSGoogle Scholar
  198. 198.
    L. Roszkowski, R. Ruiz de Austri, R. Trotta, J. High Energy Phys. 0707, 075 (2007). arXiv:0705.2012 [hep-ph] ADSGoogle Scholar
  199. 199.
    J.R. Ellis, S. Heinemeyer, K.A. Olive, G. Weiglein, J. High Energy Phys. 0502, 013 (2005). arXiv:hep-ph/0411216 MathSciNetADSGoogle Scholar
  200. 200.
    J.R. Ellis, S. Heinemeyer, K.A. Olive, G. Weiglein, J. High Energy Phys. 0605, 005 (2006). arXiv:hep-ph/0602220 ADSGoogle Scholar
  201. 201.
    J.R. Ellis, S. Heinemeyer, K.A. Olive, A.M. Weber, G. Weiglein, J. High Energy Phys. 0708, 083 (2007). arXiv:0706.0652 [hep-ph] ADSGoogle Scholar
  202. 202.
    S. Heinemeyer, X. Miao, S. Su, G. Weiglein, J. High Energy Phys. 0808, 087 (2008). arXiv:0805.2359 [hep-ph] ADSGoogle Scholar
  203. 203.
    J. Dunkley et al. (WMAP Collaboration), Astrophys. J. Suppl. 180, 306 (2009). arXiv:0803.0586 [astro-ph] ADSGoogle Scholar
  204. 204.
    M. Drees, M.M. Nojiri, Phys. Rev. D 47, 376 (1993). arXiv:hep-ph/9207234 ADSGoogle Scholar
  205. 205.
    G. Jungman, M. Kamionkowski, K. Griest, Phys. Rep. 267, 195 (1996). arXiv:hep-ph/9506380 ADSGoogle Scholar
  206. 206.
    P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke, E.A. Baltz, J. Cosmol. Astropart. Phys. 0407, 008 (2004). arXiv:astro-ph/0406204 ADSGoogle Scholar
  207. 207.
    G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 176, 367 (2007). arXiv:hep-ph/0607059 ADSGoogle Scholar
  208. 208.
    H. Baer, C. Balazs, A. Belyaev, J. High Energy Phys. 0203, 042 (2002). arXiv:hep-ph/0202076 MathSciNetADSGoogle Scholar
  209. 209.
    M.M. Nojiri, G. Polesello, D.R. Tovey, J. High Energy Phys. 0603, 063 (2006). arXiv:hep-ph/0512204 ADSGoogle Scholar
  210. 210.
    E.A. Baltz, M. Battaglia, M.E. Peskin, T. Wizansky, Phys. Rev. D 74, 103521 (2006). arXiv:hep-ph/0602187 ADSGoogle Scholar
  211. 211.
    G. Moortgat-Pick, V. Morton-Thurtle, P. Wienemann, Dark matter searches at future colliders (2009) Google Scholar
  212. 212.
    K. Desch, Plenary talk given at the LHC2FC workshop, CERN, February 2009 Google Scholar
  213. 213.
    S. Heinemeyer, S. Kraml, W. Porod, G. Weiglein, J. High Energy Phys. 0309, 075 (2003). arXiv:hep-ph/0306181 ADSGoogle Scholar
  214. 214.
    K. Moenig, Plenary talk given at the LHC2FC workshop, CERN, February 2009 Google Scholar
  215. 215.
    G.A. Moortgat-Pick et al., Phys. Rep. 460, 131 (2008). arXiv:hep-ph/0507011 ADSGoogle Scholar
  216. 216.
    G.A. Blair, A. Freitas, H.U. Martyn, G. Polesello, W. Porod, P.M. Zerwas, Acta Phys. Pol. B 36, 3445 (2005). arXiv:hep-ph/0512084 ADSGoogle Scholar
  217. 217.
    P. Bechtle, K. Desch, M. Uhlenbrock, P. Wienemann, arXiv:0907.2589 [hep-ph]
  218. 218.
    J.E. Augustin et al., Linear Collider, Final International Technology Recommendation Panel report Google Scholar
  219. 219.
    J. Brau et al. (ILC Collaboration), arXiv:0712.1950 [physics.acc-ph]
  220. 220.
    B. Foster, Plenary talk given at the LHC2FC workshop, CERN, February 2009 Google Scholar
  221. 221.
    M. Battaglia, Plenary talk given at the LHC2FC workshop, CERN, February 2009 Google Scholar
  222. 222.
    J.-P. Delahaye, Plenary talk given at the LHC2FC workshop, CERN, February 2009 Google Scholar
  223. 223.
    S. Kraml, Plenary talk given at the LHC2FC workshop, CERN, February 2009 Google Scholar
  224. 224.
    S. Kraml, arXiv:0710.5117 [hep-ph]
  225. 225.
    S. Hesselbach, arXiv:0709.2679 [hep-ph]
  226. 226.
    O. Kittel, J. Phys. Conf. Ser. 171, 012094 (2009). arXiv:0904.3241 [hep-ph] ADSGoogle Scholar
  227. 227.
    P. Langacker, G. Paz, L.T. Wang, I. Yavin, J. High Energy Phys. 0707, 055 (2007). arXiv:hep-ph/0702068 ADSGoogle Scholar
  228. 228.
    J. Ellis, F. Moortgat, G. Moortgat-Pick, J.M. Smillie, J. Tattersall, Eur. Phys. J. C 60, 633 (2009). arXiv:0809.1607 [hep-ph] ADSGoogle Scholar
  229. 229.
    F. Deppisch, O. Kittel, arXiv:0905.3088 [hep-ph]
  230. 230.
    G. Moortgat-Pick, K. Rolbiecki, J. Tattersall, P. Wienemann, arXiv:0908.2631 [hep-ph]
  231. 231.
    M.M. Nojiri, Phys. Rev. D 51, 6281 (1995). arXiv:hep-ph/9412374 ADSGoogle Scholar
  232. 232.
    P. Bechtle, M. Berggren, J. List, P. Schade, O. Stempel, arXiv:0908.0876 [hep-ex]
  233. 233.
    D.P. Roy, Plenary talk given at the LHC2FC workshop, CERN, February 2009 Google Scholar
  234. 234.
    E. Boos, H.U. Martyn, G.A. Moortgat-Pick, M. Sachwitz, A. Sherstnev, P.M. Zerwas, Eur. Phys. J. C 30, 395 (2003). arXiv:hep-ph/0303110 ADSGoogle Scholar
  235. 235.
    K. Desch, A. Imhof, Z. Was, M. Worek, Phys. Lett. B 579, 157 (2004). arXiv:hep-ph/0307331 ADSGoogle Scholar
  236. 236.
    K. Desch, Z. Was, M. Worek, Eur. Phys. J. C 29, 491 (2003). arXiv:hep-ph/0302046 ADSGoogle Scholar
  237. 237.
    T. Suehara, J. List, arXiv:0906.5508 [hep-ex]
  238. 238.
    S. Heinemeyer, W. Hollik, A.M. Weber, G. Weiglein, J. High Energy Phys. 0804, 039 (2008). arXiv:0710.2972 [hep-ph] ADSGoogle Scholar
  239. 239.
    K. Desch, J. Kalinowski, G. Moortgat-Pick, K. Rolbiecki, W.J. Stirling, J. High Energy Phys. 0612, 007 (2006). arXiv:hep-ph/0607104 ADSGoogle Scholar
  240. 240.
    P. Langacker, arXiv:0801.1345 [hep-ph]
  241. 241.
    T.G. Rizzo, arXiv:hep-ph/0610104
  242. 242.
    M.S. Carena, A. Daleo, B.A. Dobrescu, T.M.P. Tait, Phys. Rev. D 70, 093009 (2004). arXiv:hep-ph/0408098 ADSGoogle Scholar
  243. 243.
    M. Dittmar, A.S. Nicollerat, A. Djouadi, Phys. Lett. B 583(2004), 111 (2004). arXiv:hep-ph/0307020 ADSGoogle Scholar
  244. 244.
    A. Leike, Phys. Rep. 317, 143 (1999). arXiv:hep-ph/9805494 ADSGoogle Scholar
  245. 245.
    J.L. Hewett, T.G. Rizzo, Phys. Rep. 183, 193 (1989) ADSGoogle Scholar
  246. 246.
    M. Cvetic, S. Godfrey, arXiv:hep-ph/9504216
  247. 247.
    T.G. Rizzo, eConf C960625, NEW136 (1996). arXiv:hep-ph/9612440
  248. 248.
    H. Georgi, Phys. Rev. Lett. 98, 221601 (2007). arXiv:hep-ph/0703260 ADSGoogle Scholar
  249. 249.
    T.G. Rizzo, J. High Energy Phys. 0811, 039 (2008). arXiv:0809.4659 [hep-ph] MathSciNetADSGoogle Scholar
  250. 250.
    F. Petriello, S. Quackenbush, Phys. Rev. D 77, 115004 (2008). arXiv:0801.4389 [hep-ph] ADSGoogle Scholar
  251. 251.
  252. 252.
    T.G. Rizzo, Phys. Rev. D 77, 115016 (2008). arXiv:0804.0081 [hep-ph] ADSGoogle Scholar
  253. 253.
    T.G. Rizzo, arXiv:0904.2534 [hep-ph]
  254. 254.
    T.G. Rizzo, Phys. Rev. D 55, 5483 (1997). arXiv:hep-ph/9612304 ADSGoogle Scholar
  255. 255.
    T.G. Rizzo, J. High Energy Phys. 0705, 037 (2007). arXiv:0704.0235 [hep-ph] ADSGoogle Scholar
  256. 256.
    A. Juste, private communication. CDF public note. www-cdf.fnal.gov/physics/new/top/2008/tprop/Tprime2.8/public.html
  257. 257.
    A.A. Affolder et al. (CDF Collaboration), Phys. Rev. Lett. 84, 835 (2000). arXiv:hep-ex/9909027 ADSGoogle Scholar
  258. 258.
    J. Alwall et al., Eur. Phys. J. C 49, 791 (2007). arXiv:hep-ph/0607115 ADSGoogle Scholar
  259. 259.
    M. Bobrowski, A. Lenz, J. Riedl, J. Rohrwild, Phys. Rev. D 79, 113006 (2009). arXiv:0902.4883 [hep-ph] ADSGoogle Scholar
  260. 260.
    M.S. Chanowitz, Phys. Rev. D 79, 113008 (2009). arXiv:0904.3570 [hep-ph] ADSGoogle Scholar
  261. 261.
    M. Bona et al. (UTfit Collaboration), arXiv:0803.0659 [hep-ph]
  262. 262.
    G.D. Kribs, T. Plehn, M. Spannowsky, T.M.P. Tait, Phys. Rev. D 76, 075016 (2007). arXiv:0706.3718 [hep-ph] ADSGoogle Scholar
  263. 263.
    M.S. Chanowitz, M.A. Furman, I. Hinchliffe, Phys. Lett. B 78, 285 (1978) ADSGoogle Scholar
  264. 264.
    M.S. Chanowitz, M.A. Furman, I. Hinchliffe, Nucl. Phys. B 153, 402 (1979) ADSGoogle Scholar
  265. 265.
    J.A. Casas, J.R. Espinosa, M. Quiros, Phys. Lett. B 342, 171 (1995). arXiv:hep-ph/9409458 ADSGoogle Scholar
  266. 266.
    T. Hambye, K. Riesselmann, Phys. Rev. D 55, 7255 (1997). arXiv:hep-ph/9610272 ADSGoogle Scholar
  267. 267.
    J.F. Gunion, D.W. McKay, H. Pois, Phys. Lett. B 334, 339 (1994). arXiv:hep-ph/9406249 ADSGoogle Scholar
  268. 268.
    R. Fok, G.D. Kribs, Phys. Rev. D 78, 075023 (2008). arXiv:0803.4207 [hep-ph] ADSGoogle Scholar
  269. 269.
    S.W. Ham, S.K. Oh, D. Son, Phys. Rev. D 71, 015001 (2005). arXiv:hep-ph/0411012 ADSGoogle Scholar
  270. 270.
    V.E. Ozcan, S. Sultansoy, G. Unel, arXiv:0808.0285 [hep-ph]
  271. 271.
    E. Arik, S.A. Cetin, S. Sultansoy, Balk. Phys. Lett. 15N4, 1 (2007). arXiv:0708.0241 [hep-ph] Google Scholar
  272. 272.
    P. Minkowski, Phys. Lett. B 67, 421 (1977) ADSGoogle Scholar
  273. 273.
    T. Yanagida, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, ed. by O. Sawada et al., KEK Report 79-18, Tsukuba (1979), p. 95 Google Scholar
  274. 274.
    M. Gell-Mann, P. Ramond, R. Slansky, in Supergravity, ed. by P. van Nieuwenhuizen et al. (North-Holland, Amsterdam, 1979), p. 315 Google Scholar
  275. 275.
    S.L. Glashow, in Quarks and Leptons, Cargèse, ed. by M. Lévy et al. (Plenum, New York, 1980), p. 707 Google Scholar
  276. 276.
    R.N. Mohapatra, G. Senjanović, Phys. Rev. Lett. 44, 912 (1980) ADSGoogle Scholar
  277. 277.
    W.Y. Keung, G. Senjanović, Phys. Rev. Lett. 50, 1427 (1983) ADSGoogle Scholar
  278. 278.
    T. Han, B. Zhang, Phys. Rev. Lett. 97, 171804 (2006) ADSGoogle Scholar
  279. 279.
    F. del Aguila, J.A. Aguilar-Saavedra, R. Pittau, J. Phys. Conf. Ser. 53, 506 (2006). arXiv:hep-ph/0606198 Google Scholar
  280. 280.
    R. Franceschini, T. Hambye, A. Strumia, arXiv:0805.1613 [hep-ph]
  281. 281.
    A. Atre, T. Han, S. Pascoli, B. Zhang, J. High Energy Phys. 0905, 030 (2009). arXiv:0901.3589 [hep-ph] ADSGoogle Scholar
  282. 282.
    W. Konetschny, W. Kummer, Phys. Lett. B 70, 433 (1977) ADSGoogle Scholar
  283. 283.
    T.P. Cheng, L.F. Li, Phys. Rev. D 22, 2860 (1980) ADSGoogle Scholar
  284. 284.
    G. Lazarides, Q. Shafi, C. Wetterich, Nucl. Phys. B 181, 287 (1981) ADSGoogle Scholar
  285. 285.
    J. Schechter, J.W.F. Valle, Phys. Rev. D 22, 2227 (1980) ADSGoogle Scholar
  286. 286.
    R.N. Mohapatra, G. Senjanović, Phys. Rev. D 23, 165 (1981) ADSGoogle Scholar
  287. 287.
    E.J. Chun, K.Y. Lee, S.C. Park, Phys. Lett. B 566, 142 (2003). arXiv:hep-ph/0304069 ADSGoogle Scholar
  288. 288.
    P. Fileviez Perez, T. Han, G.y. Huang, T. Li, K. Wang, Phys. Rev. D 78, 015018 (2008). arXiv:0805.3536 [hep-ph] ADSGoogle Scholar
  289. 289.
    R. Foot, H. Lew, X.G. He, G.C. Joshi, Z. Phys. C 44, 441 (1989) Google Scholar
  290. 290.
    A. Arhrib, B. Bajc, D.K. Ghosh, T. Han, G.Y. Huang, I. Puljak, G. Senjanovic, arXiv:0904.2390 [hep-ph]
  291. 291.
    CMS Collaboration, CMS Physics Analysis Summary PAS-EXO-09-001 (2009) Google Scholar
  292. 292.
    M.J. Strassler, K.M. Zurek, Phys. Lett. B 651, 374 (2007). arXiv:hep-ph/0604261 ADSGoogle Scholar
  293. 293.
    G.F. Giudice, R. Rattazzi, Phys. Rep. 322, 419 (1999). arXiv:hep-ph/9801271 ADSGoogle Scholar
  294. 294.
    CMS Collaboration, CMS Physics Analysis Summary PAS-EXO-08-003 (2008) Google Scholar
  295. 295.
    P. Kanti, Lect. Notes Phys. 769, 387 (2009). arXiv:0802.2218 [hep-th] ADSGoogle Scholar
  296. 296.
    M. Shibata, H. Okawa, T. Yamamoto, Phys. Rev. D 78, 101501 (2008). arXiv:0810.4735 [gr-qc] ADSGoogle Scholar
  297. 297.
    H. Yoshino, V.S. Rychkov, Phys. Rev. D 71, 104028 (2005), [Erratum-ibid. D 77, 089905 (2008)]. arXiv:hep-th/0503171 ADSGoogle Scholar
  298. 298.
    J.A. Frost, J.R. Gaunt, M.O.P. Sampaio, M. Casals, S.R. Dolan, M.A. Parker, B.R. Webber, arXiv:0904.0979 [hep-ph]; projects.hepforge.org/charybdis2/
  299. 299.
    D.C. Dai, G. Starkman, D. Stojkovic, C. Issever, E. Rizvi, J. Tseng, Phys. Rev. D 77, 076007 (2008). arXiv:0711.3012 [hep-ph]; projects.hepforge.org/blackmax/ ADSGoogle Scholar
  300. 300.
    D.C. Dai, C. Issever, E. Rizvi, G. Starkman, D. Stojkovic, J. Tseng, arXiv:0902.3577 [hep-ph]
  301. 301.
    M. Bona et al. (UTfit Collaboration), J. High Energy Phys. 0803, 049 (2008). arXiv:0707.0636 [hep-ph], updated results and plots available at: www.utfit.org/ ADSGoogle Scholar
  302. 302.
    J. Charles et al. (CKMfitter Group), Eur. Phys. J. C 41, 1 (2005). arXiv:hep-ph/0406184, updated results and plots available at: ckmfitter.in2p3.fr ADSGoogle Scholar
  303. 303.
    M. Raidal et al., Eur. Phys. J. C 57, 13 (2008). arXiv:0801.1826 [hep-ph] ADSGoogle Scholar
  304. 304.
    F. del Aguila et al., Eur. Phys. J. C 57, 183 (2008). arXiv:0801.1800 [hep-ph] Google Scholar
  305. 305.
    M. Artuso et al., Eur. Phys. J. C 57, 309 (2008). arXiv:0801.1833[hep-ph] ADSGoogle Scholar
  306. 306.
    G. D’Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, Nucl. Phys. B 645, 155 (2002). arXiv:hep-ph/0207036 ADSGoogle Scholar
  307. 307.
    K. Agashe, G. Perez, A. Soni, Phys. Rev. D 71, 016002 (2005). arXiv:hep-ph/0408134 ADSGoogle Scholar
  308. 308.
    A.J. Buras, M. Gorbahn, U. Haisch, U. Nierste, Phys. Rev. Lett. 95, 261805 (2005). arXiv:hep-ph/0508165 ADSGoogle Scholar
  309. 309.
    G. Isidori, F. Mescia, C. Smith, Nucl. Phys. B 718, 319 (2005). arXiv:hep-ph/0503107 MATHADSGoogle Scholar
  310. 310.
    G. Isidori, F. Mescia, P. Paradisi, C. Smith, S. Trine, J. High Energy Phys. 0608, 064 (2006). arXiv:hep-ph/0604074 ADSGoogle Scholar
  311. 311.
    M. Blanke, A.J. Buras, B. Duling, K. Gemmler, S. Gori, J. High Energy Phys. 0903, 108 (2009). arXiv:0812.3803 [hep-ph] ADSGoogle Scholar
  312. 312.
    J. Hisano, M. Nagai, P. Paradisi, Y. Shimizu, arXiv:0904.2080 [hep-ph]
  313. 313.
    N. Arkani-Hamed, A.G. Cohen, H. Georgi, Phys. Lett. B 513, 232 (2001). arXiv:hep-ph/0105239 MATHMathSciNetADSGoogle Scholar
  314. 314.
    N. Arkani-Hamed, A.G. Cohen, T. Gregoire, J.G. Wacker, J. High Energy Phys. 0208, 020 (2002). arXiv:hep-ph/0202089 MathSciNetADSGoogle Scholar
  315. 315.
    T. Abe et al. (American Linear Collider Working Group), arXiv:hep-ex/0106057
  316. 316.
    A. De Roeck, J.R. Ellis, F. Gianotti, arXiv:hep-ex/0112004

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  • A. De Roeck
    • 1
    • 2
  • J. Ellis
    • 1
  • C. Grojean
    • 1
    • 3
  • S. Heinemeyer
    • 4
  • K. Jakobs
    • 5
  • G. Weiglein
    • 6
  • J. Wells
    • 1
  • G. Azuelos
    • 7
    • 8
  • S. Dawson
    • 9
  • B. Gripaios
    • 1
  • T. Han
    • 10
  • J. Hewett
    • 11
  • M. Lancaster
    • 12
  • C. Mariotti
    • 13
  • F. Moortgat
    • 14
  • G. Moortgat-Pick
    • 6
  • G. Polesello
    • 15
  • S. Riemann
    • 17
  • M. Schumacher
    • 5
  • K. Assamagan
    • 9
  • P. Bechtle
    • 17
  • M. Carena
    • 18
  • G. Chachamis
    • 19
  • K. F. Chen
    • 20
  • S. De Curtis
    • 21
  • K. Desch
    • 22
  • M. Dittmar
    • 1
  • H. Dreiner
    • 23
  • M. Dührssen
    • 5
  • B. Foster
    • 48
  • M. T. Frandsen
    • 24
    • 25
  • A. Giammanco
    • 26
  • R. Godbole
    • 27
  • S. Gopalakrishna
    • 9
  • P. Govoni
    • 28
  • J. Gunion
    • 29
  • W. Hollik
    • 30
  • W. S. Hou
    • 20
  • G. Isidori
    • 31
  • A. Juste
    • 18
  • J. Kalinowski
    • 32
  • A. Korytov
    • 33
  • E. Kou
    • 34
  • S. Kraml
    • 35
  • M. Krawczyk
    • 32
  • A. Martin
    • 36
  • D. Milstead
    • 37
  • V. Morton-Thurtle
    • 6
  • K. Moenig
    • 16
  • B. Mele
    • 38
  • E. Ozcan
    • 12
  • M. Pieri
    • 39
  • T. Plehn
    • 40
  • L. Reina
    • 41
  • E. Richter-Was
    • 42
    • 43
  • T. Rizzo
    • 11
  • K. Rolbiecki
    • 6
  • F. Sannino
    • 24
  • M. Schram
    • 44
  • J. Smillie
    • 6
  • S. Sultansoy
    • 45
  • J. Tattersall
    • 6
  • P. Uwer
    • 46
  • B. Webber
    • 47
  • P. Wienemann
    • 22
  1. 1.Department of PhysicsCERNGenevaSwitzerland
  2. 2.University of AntwerpWilrijkBelgium
  3. 3.CEASaclayFrance
  4. 4.Instituto de Física de Cantabria (CSIC-UC)SantanderSpain
  5. 5.Physikalisches InstitutAlbert-Ludwigs-UniversitätFreiburgGermany
  6. 6.IPPPUniversity of DurhamDurhamUK
  7. 7.Universite de MontréalMontréalCanada
  8. 8.TRIUMFVancouverCanada
  9. 9.Physics DepartmentBrookhaven National LaboratoryUpton New YorkUSA
  10. 10.Department of PhysicsUniversity of WisconsinMadisonUSA
  11. 11.SLAC National Accelerator LaboratoryMenlo ParkUSA
  12. 12.UCLLondonUK
  13. 13.INFNSezione di TorinoTorinoItaly
  14. 14.Department of PhysicsETH HonggerbergZurichSwitzerland
  15. 15.INFNSezione di PaviaPaviaItaly
  16. 16.DESYZeuthenGermany
  17. 17.DESYHamburgGermany
  18. 18.Fermi National Accelerator LaboratoryBataviaUSA
  19. 19.Paul Scherrer InstitutVilligenSwitzerland
  20. 20.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan
  21. 21.Department of PhysicsUniversity of Florence and INFNSezione di FirenzeItaly
  22. 22.Physikalisches InstitutUniversität BonnBonnGermany
  23. 23.Bethe Center for Theoretical Physics and Physikalisches InstitutBonn UniversityBonnGermany
  24. 24.CP³—OriginsUniversity of Southern DenmarkOdenseDenmark
  25. 25.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordUK
  26. 26.CP3Université Catholique de LouvainLouvain-la-NeuveBelgium
  27. 27.Centre for High Energy PhysicsIndian Institute of ScienceBangaloreIndia
  28. 28.Università and INFN Milano-BicoccaMilanoItaly
  29. 29.Department of PhysicsUC DavisUSA
  30. 30.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MunichGermany
  31. 31.INFNLaboratori Nazionali di FrascatiFrascatiItaly
  32. 32.Physics DepartmentUniversity of WarsawWarsawPoland
  33. 33.University of FloridaGainesvilleUSA
  34. 34.Laboratoire de l’Accelerateur LineaireUniversité Paris-Sud 11OrsayFrance
  35. 35.LPSCUJF Grenoble 1, CNRS/IN2P3GrenobleFrance
  36. 36.Department of Physics, Sloane LaboratoryYale UniversityNew HavenUSA
  37. 37.Fysikum, Stockholms UniversitetStockholmSweden
  38. 38.INFNSezione di Roma, and Università “La Sapienza”RomeItaly
  39. 39.University of California San DiegoSan DiegoUSA
  40. 40.Institute for Theoretical PhysicsHeidelberg UniversityHeidelbergGermany
  41. 41.Physics DepartmentFlorida State UniversityTallahasseeUSA
  42. 42.Institute of PhysicsJagellonian UniversityKrakowPoland
  43. 43.Institute of Nuclear Physics IFJ-PANKrakowPoland
  44. 44.McGill UniversityMontréalCanada
  45. 45.Physics DivisionTOBB University of Economics and TechnologyAnkaraTurkey
  46. 46.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  47. 47.Cavendish LaboratoryCambridgeUK
  48. 48.Particle PhysicsUniversity of OxfordOxfordUK

Personalised recommendations