Skip to main content
Log in

Confront holographic QCD with Regge trajectories of vectors and axial-vectors

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

By matching the predictions of the Dp–Dq soft-wall model in type II superstring theory with the spectra of vector and axial-vector mesons, we show the dependence of the Regge trajectories parameters on the metric parameters of the model. From the experimental results of Regge parameters for vector mesons, it is found that the D3 background brane with both q=5 and q=7 probe brane and D4 background brane with q=4 probe brane are close to the realistic holographic QCD. We also discuss how to realize chiral symmetry breaking in the vacuum and asymptotic chiral symmetry restoration in high excitation states. We find that the constant component of the 5-dimension mass square of axial-vector mesons plays an efficient role to realize the chiral symmetry breaking, and a small negative z 4 correction in the 5-dimension mass square is helpful to realize the chiral symmetry restoration in high excitation states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Nambu, in Symmetries and Quark Models, ed. by R. Chand (Gordon and Breach, New York, 2001)

    Google Scholar 

  2. Y. Nambu, Phys. Rev. D 10, 4262 (1974)

    Article  ADS  Google Scholar 

  3. H.B. Nielsen, Submitted to the 15th International Conference on High Energy Physics, Kiev (1970)

  4. H.B. Nielsen, P. Olesen, Nucl. Phys. B 61, 45 (1973)

    Article  ADS  Google Scholar 

  5. L. Susskind, Nuovo Cimento A 69, 457 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  6. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)]

    MATH  MathSciNet  ADS  Google Scholar 

  7. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  8. E. Witten, Adv. Theor. Math. Phys. 2, 253–291 (1998)

    MATH  MathSciNet  Google Scholar 

  9. O. Aharony, S.S. Gubser, J. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity. Phys. Rep. 323, 183 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  10. O. Aharony, arXiv:hep-th/0212193

  11. A. Zaffaroni, PoS RTN2005, 005 (2005)

    MathSciNet  Google Scholar 

  12. D.T. Son, M.A. Stephanov, Phys. Rev. D 69, 065020 (2004)

    Article  ADS  Google Scholar 

  13. G.F. de Teramond, S.J. Brodsky, Phys. Rev. Lett. 94, 201601 (2005)

    Article  ADS  Google Scholar 

  14. L. Da Rold, A. Pomarol, Nucl. Phys. B 721, 79 (2005)

    Article  MATH  ADS  Google Scholar 

  15. J. Erlich, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 95, 261602 (2005)

    Article  ADS  Google Scholar 

  16. K. Ghoroku, N. Maru, M. Tachibana, M. Yahiro, Phys. Lett. B 633, 602 (2006). arXiv:hep-ph/0510334

    Article  ADS  Google Scholar 

  17. J.P. Shock, F. Wu, Y.L. Wu, Z.F. Xie, J. High Energy Phys. 0703, 064 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  18. P. Colangelo, F. De Fazio, F. Jugeau, S. Nicotri, Phys. Lett. B 652, 73 (2007)

    Article  ADS  Google Scholar 

  19. J. Erdmenger, N. Evans, I. Kirsch, E. Threlfall, Eur. Phys. J. A 35, 81 (2008). arXiv:0711.4467 [hep-th]

    Article  ADS  Google Scholar 

  20. J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik, I. Kirsch, Phys. Rev. D 69, 066007 (2004). arXiv:hep-th/0306018

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Kruczenski, D. Mateos, R.C. Myers, D.J. Winters, J. High Energy Phys. 0405, 041 (2004)

    Article  ADS  Google Scholar 

  22. T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005)

    Article  MATH  ADS  Google Scholar 

  23. T. Sakai, S. Sugimoto, Prog. Theor. Phys. 114, 1083 (2006)

    Article  ADS  Google Scholar 

  24. D. Gepner, S. Sekahr Pal, Phys. Rev. D 76, 125017 (2007)

    Article  Google Scholar 

  25. N. Horigome, Y. Tanii, J. High Energy Phys. 0701, 072 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  26. K. Kajantie, T. Tahkokallio, J.-T. Yee, J. High Energy Phys. 0701, 019 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  27. D. Mateos, R.C. Myers, R.M. Thomson, J. High Energy Phys. 0705, 067 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  28. K. Hashimoto, T. Hirayama, A. Miwa, J. High Energy Phys. 0706, 020 (2007)

    Article  ADS  Google Scholar 

  29. D.K. Hong, T. Inami, H.-U. Yee, Phys. Lett. B 646, 165–171 (2007)

    Article  ADS  Google Scholar 

  30. K. Nawa, H. Suganuma, T. Kojo, Phys. Rev. D 75, 086003 (2007)

    Article  ADS  Google Scholar 

  31. D.K. Hong, M. Rho, H.-U. Yee, P. Yi, Phys. Rev. D 76, 061901 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  32. G. Veneziano, Nuovo Cimento A 57, 190 (1968)

    Article  ADS  Google Scholar 

  33. P.D.B. Collins, An Introduction to Regge Theory and High Energy Physics (Cambridge Univ. Press, Cambridge, 1975)

    Google Scholar 

  34. A.V. Anisovich, V.V. Anisovich, A.V. Sarantsev, Phys. Rev. D 62, 051502 (2000)

    Article  ADS  Google Scholar 

  35. A. Karch, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. D 74, 015005 (2006)

    Article  ADS  Google Scholar 

  36. W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006) and 2007 partial update for the 2008 edition

    Article  ADS  Google Scholar 

  37. L.Y. Glozman, arXiv:0710.0978 [hep-ph]

  38. M. Shifman, A. Vainshtein, arXiv:0710.0863 [hep-ph]

  39. A. Karch, E. Katz, J. High Energy Phys. 0206, 043 (2002). arXiv:hep-th/0205236

    Article  MathSciNet  ADS  Google Scholar 

  40. G.W. Gibbons, K. Maeda, Nucl. Phys. B 298, 741 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  41. D. Garfinkle, G.T. Horowitz, A. Strominger, Phys. Rev. D 43, 3140 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  42. G.T. Horowitz, A. Strominger, Nucl. Phys. B 360, 197 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  43. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998)

    MATH  MathSciNet  Google Scholar 

  44. O. Andreev, Phys. Rev. D 73, 107901 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  45. L.S. Celenza, C.M. Shakin, Phys. Rev. D 34, 1591 (1986)

    Article  ADS  Google Scholar 

  46. M.A. Shifman, A.I. Vainstein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979)

    Article  ADS  Google Scholar 

  47. M.A. Shifman, A.I. Vainstein, V.I. Zakharov, Nucl. Phys. B 147, 448 (1979)

    Article  ADS  Google Scholar 

  48. S. Narison, Phys. Lett. B 300, 293 (1993)

    Article  ADS  Google Scholar 

  49. C. Csaki, J. Hubisz, P. Meade, arXiv:hep-ph/0510275

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, S., Huang, M., Yan, QS. et al. Confront holographic QCD with Regge trajectories of vectors and axial-vectors. Eur. Phys. J. C 66, 187–196 (2010). https://doi.org/10.1140/epjc/s10052-010-1239-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1239-0

Keywords

Navigation