Skip to main content
Log in

Central exclusive χ c meson production at the Tevatron revisited

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Motivated by the recent experimental observation of exclusive χ c events at the Tevatron, we revisit earlier studies of central exclusive scalar χ c0 meson production, before generalising the existing formalism to include χ c1 and χ c2 mesons. Although χ c0 production was previously assumed to be dominant, we find that the χ c1 and χ c2 rates for the experimentally considered χ c J/ψ γμ + μ γ decay process are in fact comparable to the χ c0 rate. We have developed a new Monte Carlo event generator, SuperCHIC, which models the central exclusive production of the three χ c states via this decay chain, and have explored possible ways of distinguishing them, given that their mass differences are not resolvable within the current experimental set-up. Although we find that the severity of current experimental cuts appears to preclude this, the acceptance does not change crucially between the three states and so our conclusions regarding the overall rates remain unchanged. This therefore raises the interesting possibility that exclusive χ c1 and χ c2 production has already been observed at the Tevatron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Robson, Nucl. Phys. B 130, 328 (1977)

    Article  ADS  Google Scholar 

  2. F.E. Close, Rep. Prog. Phys. 51, 833 (1988)

    Article  ADS  Google Scholar 

  3. P. Minkowski, Fizika B 14, 79 (2005). arXiv:hep-ph/0405032

    ADS  Google Scholar 

  4. V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 19, 477 (2001). arXiv:hep-ph/0011393 [Erratum-ibid. C 20, 599 (2001)]

    Article  ADS  Google Scholar 

  5. A.B. Kaidalov, V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 31, 387 (2003). arXiv:hep-ph/0307064

    Article  ADS  Google Scholar 

  6. V.A. Khoze, A.D. Martin, M.G. Ryskin, W.J. Stirling, Eur. Phys. J. C 35, 211 (2004). arXiv:hep-ph/0403218

    Article  ADS  Google Scholar 

  7. A. Kaidalov et al., V.A. Khoze, A.D. Martin, M. Ryskin, Eur. Phys. J. C 33, 261 (2004). hep-ph/0311023

    Article  ADS  Google Scholar 

  8. E. Klempt, A. Zaitsev, Phys. Rep. 454, 1 (2007). arXiv:0708.4016 [hep-ph]

    Article  ADS  Google Scholar 

  9. F.E. Close, A. Kirk, Phys. Lett. B 397, 333 (1997). arXiv:hep-ph/9701222

    Article  ADS  Google Scholar 

  10. F.E. Close, A. Kirk, G. Schuler, Phys. Lett. B 477, 13 (2000). arXiv:hep-ph/0001158

    Article  ADS  Google Scholar 

  11. S. Heinemeyer, V.A. Khoze, M.G. Ryskin, W.J. Stirling, M. Tasevsky, G. Weiglein, Eur. Phys. J. C 53, 231 (2008). arXiv:0708.3052 [hep-ph]

    Article  ADS  Google Scholar 

  12. V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 14, 525 (2000). arXiv:hep-ph/0002072

    Article  ADS  Google Scholar 

  13. M.G. Albrow, A. Rostovtsev, arXiv:hep-ph/0009336

  14. V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 23, 311 (2002). arXiv:hep-ph/0111078

    Article  ADS  Google Scholar 

  15. A. De Roeck, V.A. Khoze, A.D. Martin, R. Orava, M.G. Ryskin, Eur. Phys. J. C 25, 391 (2002). arXiv:hep-ph/0207042

    Article  ADS  Google Scholar 

  16. A.D. Martin, M.G. Ryskin, V.A. Khoze, arXiv:0903.2980 [hep-ph] (see for a recent review)

  17. M.G. Albrow, et al. (FP420 R&D Collaboration), arXiv:0806.0302 [hep-ex]

  18. P. Bussey, P. Van Mechelen, in H. Jung, et al. arXiv:0903.3861 [hep-ph], p. 557

  19. C. Royon, Acta Phys. Pol. B 39, 2339 (2008). arXiv:0805.0261 [hep-ph]

    ADS  Google Scholar 

  20. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 99, 242002 (2007). arXiv:0707.2374 [hep-ex]

    Article  ADS  Google Scholar 

  21. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 77, 052004 (2008). arXiv:0712.0604 [hep-ex]

    Article  ADS  Google Scholar 

  22. T. Aaltonen, et al. (CDF Collaboration), Phys. Rev. Lett. 102, 242001 (2009). arXiv:0902.1271 [hep-ex]

    Article  ADS  Google Scholar 

  23. M. Albrow, arXiv:0909.3471

  24. M. Albrow, J. Pinfold, private communication

  25. V.A. Khoze, A.D. Martin, M.G. Ryskin, W.J. Stirling, Eur. Phys. J. C 38, 475 (2005). arXiv:hep-ph/0409037

    Article  ADS  Google Scholar 

  26. J. Pumplin, Phys. Rev. D 47, 4820 (1993)

    Article  ADS  Google Scholar 

  27. F. Yuan, Phys. Lett. B 510, 155 (2001). arXiv:hep-ph/0103213

    Article  ADS  Google Scholar 

  28. V.A. Petrov, R.A. Ryutin, J. High Energy Phys. 0408, 013 (2004). arXiv:hep-ph/0403189

    ADS  Google Scholar 

  29. V.A. Petrov, R.A. Ryutin, A.E. Sobol, J.P. Guillaud, J. High Energy Phys. 0506, 007 (2005). arXiv:hep-ph/0409118

    Article  ADS  Google Scholar 

  30. A. Bzdak, Phys. Lett. B 619, 288 (2005). arXiv:hep-ph/0506101

    Article  ADS  Google Scholar 

  31. M. Rangel, C. Royon, G. Alves, J. Barreto, R.B. Peschanski, Nucl. Phys. B 774, 53 (2007). arXiv:hep-ph/0612297

    Article  ADS  Google Scholar 

  32. R.S. Pasechnik, A. Szczurek, O.V. Teryaev, Phys. Lett. B 680, 62 (2009). arXiv:0901.4187 [hep-ph] and references therein

    Article  Google Scholar 

  33. G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D 51, 1125 (1995). arXiv:hep-ph/9407339 [Erratum-ibid. D 55, 5853 (1997)]

    Article  ADS  Google Scholar 

  34. N. Brambilla, A. Pineda, J. Soto, A. Vairo, Rev. Mod. Phys. 77, 1423 (2005). arXiv:hep-ph/0410047

    Article  ADS  Google Scholar 

  35. N. Brambilla, A. Vairo, Acta Phys. Pol. B 38, 3429 (2007). arXiv:0711.1328 [hep-ph]

    ADS  Google Scholar 

  36. V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 18, 167 (2000). arXiv:hep-ph/0007359

    Article  ADS  Google Scholar 

  37. M.G. Ryskin, A.D. Martin, V.A. Khoze, Eur. Phys. J. C 54, 199 (2008). arXiv:0710.2494 [hep-ph]

    Article  ADS  Google Scholar 

  38. M.G. Ryskin, A.D. Martin, V.A. Khoze, Eur. Phys. J. C 60, 249 (2009). arXiv:0812.2407 [hep-ph]

    Article  ADS  Google Scholar 

  39. V.A. Khoze, A.D. Martin, M.G. Ryskin, J. High Energy Phys. 0605, 036 (2006). arXiv:hep-ph/0602247

    Article  ADS  Google Scholar 

  40. M.G. Ryskin, A.D. Martin, V.A. Khoze, Eur. Phys. J. C 60, 265 (2009). arXiv:0812.2413 [hep-ph]

    Article  ADS  Google Scholar 

  41. J. Bartels, S. Bondarenko, K. Kutak, L. Motyka, Phys. Rev. D 73, 093004 (2006). arXiv:hep-ph/0601128

    Article  ADS  Google Scholar 

  42. C. Amsler, et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008) and 2009 partial update for the 2010 edition

    Article  ADS  Google Scholar 

  43. L.D. Landau, Dokl. Akad. Nauk SSSR 60, 213 (1948)

    Google Scholar 

  44. C.N. Yang, Phys. Rev. 77, 242 (1950)

    Article  MATH  ADS  Google Scholar 

  45. D. Barberis, et al. (WA102 Collaboration), Phys. Lett. B 440, 225 (1998)

    Article  ADS  Google Scholar 

  46. D. Barberis, et al. (WA102 Collaboration), Phys. Lett. B 422, 399 (1998)

    Article  ADS  Google Scholar 

  47. A. Kirk, et al. (WA102 Collaboration), arXiv:hep-ph/9810221

  48. V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 24, 581 (2002). arXiv:hep-ph/0203122

    Article  Google Scholar 

  49. S. Aid, et al. (H1 Collaboration), Nucl. Phys. B 472, 3 (1996). arXiv:hep-ex/9603005

    Article  ADS  Google Scholar 

  50. A.D. Martin, M.G. Ryskin, Phys. Rev. D 64, 094017 (2001). arXiv:hep-ph/0107149

    Article  ADS  Google Scholar 

  51. A.G. Shuvaev, K.J. Golec-Biernat, A.D. Martin, M.G. Ryskin, Phys. Rev. D 60, 014015 (1999). arXiv:hep-ph/9902410

    Article  ADS  Google Scholar 

  52. J.H. Kuhn, J. Kaplan, E.G.O. Safiani, Nucl. Phys. B 157, 125 (1979)

    Article  ADS  Google Scholar 

  53. R. Barbieri, R. Gatto, R. Kogerler, Phys. Lett. B 60, 183 (1976)

    Article  ADS  Google Scholar 

  54. V.A. Novikov, L.B. Okun, M.A. Shifman, A.I. Vainshtein, M.B. Voloshin, V.I. Zakharov, Phys. Rep. 41, 1 (1978)

    Article  ADS  Google Scholar 

  55. F.E. Close, G.R. Farrar, Z.P. Li, Phys. Rev. D 55, 5749 (1997). arXiv:hep-ph/9610280

    Article  ADS  Google Scholar 

  56. R. Barbieri, M. Caffo, R. Gatto, E. Remiddi, Phys. Lett. B 95, 93 (1980)

    Article  ADS  Google Scholar 

  57. R. Alkofer, C.S. Fischer, Fizika B 13, 65 (2004). arXiv:hep-ph/0309089

    ADS  Google Scholar 

  58. M. Gluck, E. Reya, A. Vogt, Z. Phys. C 67, 433 (1995)

    Article  ADS  Google Scholar 

  59. L. Frankfurt, C.E. Hyde, M. Strikman, C. Weiss, Phys. Rev. D 75, 054009 (2007). arXiv:0710.2942 [hep-ph]

    Article  ADS  Google Scholar 

  60. M. Strikman, C. Weiss, arXiv:0812.1053 [hep-ph]

  61. E. Gotsman, E. Levin, U. Maor, J.S. Miller, Eur. Phys. J. C 57, 689 (2008). arXiv:0805.2799 [hep-ph]

    Article  ADS  Google Scholar 

  62. H.A. Peng, Z.M. He, C.S. Ju, Phys. Lett. B 351, 349 (1995)

    Article  ADS  Google Scholar 

  63. E. Stein, A. Schafer, Phys. Lett. B 300, 400 (1993)

    Article  ADS  Google Scholar 

  64. T. Mori, et al. (BELLE Collaboration), J. Phys. Soc. Jpn. 76, 074102 (2007). arXiv:0704.3538 [hep-ex]

    Article  ADS  Google Scholar 

  65. H. Nakazawa, et al. (BELLE Collaboration), Phys. Lett. B 615, 39 (2005). arXiv:hep-ex/0412058

    Article  ADS  Google Scholar 

  66. S. Uehara, et al. (BELLE Collaboration), arXiv:0903.3697 [hep-ex]

  67. V.A. Khoze, A.D. Martin, R. Orava, M.G. Ryskin, Eur. Phys. J. C 19, 313 (2001). arXiv:hep-ph/0010163

    Article  ADS  Google Scholar 

  68. L.A. Harland-Lang, et al., in preparation

  69. M. Albrow, et al., CERN-LHCC-2006-039, CERN-LHCC-G-124, CERN-CMS-NOTE-2007-002, December 2006

  70. G. Anelli, et al. (TOTEM Collaboration), JINST 3, S08007 (2008)

    Google Scholar 

  71. M. Albrow, et al. (USCMS Collaboration), arXiv:0811.0120 [hep-ex]

  72. J.W. Lamsa, R. Orava, arXiv:0907.3847 [physics.acc-ph]

  73. G.V. Pakhlova, arXiv:0810.4114 [hep-ex]

  74. G.V. Pakhlova, Phys. At. Nucl. 72, 482 (2009). [Yad. Fiz. 72 518 (2009)]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Khoze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harland-Lang, L.A., Khoze, V.A., Ryskin, M.G. et al. Central exclusive χ c meson production at the Tevatron revisited. Eur. Phys. J. C 65, 433–448 (2010). https://doi.org/10.1140/epjc/s10052-009-1214-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-1214-9

Keywords

Navigation