Nuclear dependence of charm production

Abstract

Using data taken by SELEX during the 1996–1997 fixed target run at Fermilab, we study the production of charmed hadrons on copper and carbon targets with Σ , p, π , and π + beams. Parametrizing the dependence of the inclusive production cross section on the atomic number A as A α, we determine α for D +, D 0, D + s , D +(2010), Λ + c , and their respective anti-particles, as a function of their transverse momentum p t and scaled longitudinal momentum x F . Within our statistics there is no dependence of α on x F for any charm species for the interval 0.1<x F <1.0. The average value of α for charm production by pion beams is α meson=0.850±0.028. This is somewhat larger than the corresponding average α baryon=0.755±0.016 for charm production by baryon beams (Σ , p).

References

  1. 1.

    H. Cobbaert et al. (WA78 Collaboration), Phys. Lett. B 191, 456 (1987)

    Article  ADS  Google Scholar 

  2. 2.

    H. Cobbaert et al. (WA78 Collaboration), Phys. Lett. B 206, 546 (1988)

    Article  Google Scholar 

  3. 3.

    H. Cobbaert et al. (WA78 Collaboration), Phys. Lett. B 213, 395 (1988)

    Article  ADS  Google Scholar 

  4. 4.

    M.J. Leitch et al. (FNAL E866/NuSea Collaboration), Phys. Rev. Lett. 84, 3256 (2000). arXiv:nucl-ex/9909007

    Article  ADS  Google Scholar 

  5. 5.

    B. Alessandro et al. (NA50 Collaboration), Eur. Phys. J. C 33, 31 (2004)

    Article  Google Scholar 

  6. 6.

    I. Abt et al. (HERA-B Collaboration), Eur. Phys. J. C 60, 525 (2009). arXiv:0812.0734 [hep-ex]

    Article  ADS  Google Scholar 

  7. 7.

    K.J. Heller et al., Phys. Rev. D 16, 2737 (1977)

    Article  ADS  Google Scholar 

  8. 8.

    P. Skubic et al., Phys. Rev. D 18, 3115 (1978)

    Article  ADS  Google Scholar 

  9. 9.

    A.N. Aleev et al. (BIS-2 Collaboration), Sov. J. Nucl. Phys. 46, 657 (1987). [Yad. Fiz. 46, 1127 (1987)]

    Google Scholar 

  10. 10.

    M. Vecko et al. (BIS-2 Collaboration), Czech. J. Phys. B 39, 297 (1989)

    Article  ADS  Google Scholar 

  11. 11.

    M. Adamovich et al. (WA82 Collaboration), Phys. Lett. B 284, 453 (1992)

    Article  ADS  Google Scholar 

  12. 12.

    G.A. Alves et al. (Fermilab E769 Collaboration), Phys. Rev. Lett. 70, 722 (1993)

    Article  ADS  Google Scholar 

  13. 13.

    G.A. Alves et al. (E769 Collaboration), Phys. Rev. D 49, 4317 (1994)

    Article  ADS  Google Scholar 

  14. 14.

    M.J. Leitch et al. (E789 Collaboration), Phys. Rev. Lett. 72, 2542 (1994)

    Article  ADS  Google Scholar 

  15. 15.

    M. Adamovich et al. (BEATRICE Collaboration), Nucl. Phys. B 495, 3 (1997)

    Article  ADS  Google Scholar 

  16. 16.

    L. Apanasevich et al. (Fermilab E706 Collaboration), Phys. Rev. D 56, 1391 (1997). arXiv:hep-ex/9702014

    Article  ADS  Google Scholar 

  17. 17.

    I. Abt et al. (HERA-B Collaboration), Eur. Phys. J. C 52, 531 (2007). arXiv:0708.1443 [hep-ex]

    Article  ADS  Google Scholar 

  18. 18.

    M.E. Duffy et al., Phys. Rev. Lett. 55, 1816 (1985)

    Article  ADS  Google Scholar 

  19. 19.

    R. Vogt (Hard Probe Collaboration), Int. J. Mod. Phys. E 12, 211 (2003). arXiv:hep-ph/0111271

    Article  ADS  Google Scholar 

  20. 20.

    C. Lourenco, H.K. Wohri, Phys. Rept. 433, 127 (2006). arXiv:hep-ph/0609101

    Article  ADS  Google Scholar 

  21. 21.

    A.D. Frawley, T. Ullrich, R. Vogt, Phys. Rept. 462, 125 (2008). arXiv:0806.1013 [nucl-ex]

    Article  ADS  Google Scholar 

  22. 22.

    J.S. Russ et al. (SELEX Collaboration), in Proceedings of the 29th International Conference on High Energy Physics, ed. by A. Astbury et al., vol. II (World Scientific, Singapore, 1998), p. 1259. arXiv:hep-ex/9812031

    Google Scholar 

  23. 23.

    J. Engelfried et al., Nucl. Instrum. Methods A 431, 53 (1999). arXiv:hep-ex/9811001

    Article  ADS  Google Scholar 

  24. 24.

    A. Kushnirenko et al. (SELEX Collaboration), Phys. Rev. Lett. 86, 5243 (2001). arXiv:hep-ex/0010014

    Article  ADS  Google Scholar 

  25. 25.

    F.G. Garcia et al. (SELEX Collaboration), Phys. Lett. B 528, 49 (2002). arXiv:hep-ex/0109017

    Article  ADS  Google Scholar 

  26. 26.

    M. Kaya et al. (SELEX Collaboration), Phys. Lett. B 558, 34 (2003). arXiv:hep-ex/0302039

    Article  ADS  Google Scholar 

  27. 27.

    S.J. Brodsky, B. Kopeliovich, I. Schmidt, J. Soffer, Phys. Rev. D 73, 113005 (2006). arXiv:hep-ph/0603238

    ADS  Google Scholar 

  28. 28.

    M.I. Adamovich et al. (WA89 Collaboration), Eur. Phys. J. C 26, 357 (2003)

    Article  ADS  Google Scholar 

  29. 29.

    A. Blanco-Covarrubias et al. (SELEX Collaboration), in preparation

Download references

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to J. Engelfried.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

The SELEX Collaboration., Blanco-Covarrubias, A., Engelfried, J. et al. Nuclear dependence of charm production. Eur. Phys. J. C 64, 637–644 (2009). https://doi.org/10.1140/epjc/s10052-009-1174-0

Download citation

PACS

  • 13.85.Ni
  • 14.65.Dw
  • 24.85.+p