Skip to main content
Log in

Likelihood functions for supersymmetric observables in frequentist analyses of the CMSSM and NUHM1

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

On the basis of frequentist analyses of experimental constraints from electroweak precision data, (g−2) μ , B-physics and cosmological data, we investigate the parameters of the constrained MSSM (CMSSM) with universal soft supersymmetry-breaking mass parameters, and a model with common non-universal Higgs masses (NUHM1). We present χ 2 likelihood functions for the masses of supersymmetric particles and Higgs bosons, as well as BR(bs γ), BR(B s μ + μ ) and the spin-independent dark-matter scattering cross section, σ SI p . In the CMSSM we find preferences for sparticle masses that are relatively light. In the NUHM1 the best-fit values for many sparticle masses are even slightly smaller, but with greater uncertainties. The likelihood functions for most sparticle masses are cut off sharply at small masses, in particular by the LEP Higgs mass constraint. Both in the CMSSM and the NUHM1, the coannihilation region is favored over the focus-point region at about the 3-σ level, largely but not exclusively because of (g−2) μ . Many sparticle masses are highly correlated in both the CMSSM and NUHM1, and most of the regions preferred at the 95% C.L. are accessible to early LHC running, though high-luminosity running would be needed to cover the regions allowed at the 3-σ levels. Some slepton and chargino/neutralino masses should be in reach at the ILC. The masses of the heavier Higgs bosons should be accessible at the LHC and the ILC in portions of the preferred regions in the (M A ,tan β) plane. In the CMSSM, the likelihood function for BR(B s μ + μ ) is peaked close to the Standard Model value, but much larger values are possible in the NUHM1. We find that values of σ SI p >10−10 pb are preferred in both the CMSSM and the NUHM1. We study the effects of dropping the (g−2) μ , BR(bs γ), Ω χ h 2 and M h constraints, demonstrating that they are not in tension with the other constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.P. Nilles, Phys. Rep. 110, 1 (1984)

    Article  ADS  Google Scholar 

  2. H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985)

    Article  ADS  Google Scholar 

  3. R. Barbieri, S. Ferrara, C.A. Savoy, Phys. Lett. B 119, 343 (1982)

    Article  ADS  Google Scholar 

  4. O. Buchmueller et al., J. High Energy Phys. 0809, 117 (2008). arXiv:0808.4128 [hep-ph]

    Article  ADS  Google Scholar 

  5. M. Drees, M.M. Nojiri, Phys. Rev. D 47, 376 (1993). arXiv:hep-ph/9207234

    Article  ADS  Google Scholar 

  6. H. Baer, M. Brhlik, Phys. Rev. D 53, 597 (1996). arXiv:hep-ph/9508321

    Article  ADS  Google Scholar 

  7. H. Baer, M. Brhlik, Phys. Rev. D 57, 567 (1998). arXiv:hep-ph/9706509

    Article  ADS  Google Scholar 

  8. V.D. Barger, C. Kao, Phys. Rev. D 57, 3131 (1998). arXiv:hep-ph/9704403

    Article  ADS  Google Scholar 

  9. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, M. Srednicki, Phys. Lett. B 510, 236 (2001). arXiv:hep-ph/0102098

    Article  ADS  Google Scholar 

  10. V.D. Barger, C. Kao, Phys. Lett. B 518, 117 (2001). arXiv:hep-ph/0106189

    Article  ADS  Google Scholar 

  11. L. Roszkowski, R. Ruiz de Austri, T. Nihei, J. High Energy Phys. 0108, 024 (2001). arXiv:hep-ph/0106334

    Article  ADS  Google Scholar 

  12. A.B. Lahanas, V.C. Spanos, Eur. Phys. J. C 23, 185 (2002). arXiv:hep-ph/0106345

    Article  ADS  Google Scholar 

  13. A. Djouadi, M. Drees, J.L. Kneur, J. High Energy Phys. 0108, 055 (2001). arXiv:hep-ph/0107316

    Article  ADS  Google Scholar 

  14. W. de Boer, M. Huber, C. Sander, D.I. Kazakov, Phys. Lett. B 515, 283 (2001)

    Article  ADS  Google Scholar 

  15. U. Chattopadhyay, A. Corsetti, P. Nath, Phys. Rev. D 66, 035003 (2002). arXiv:hep-ph/0201001

    Article  ADS  Google Scholar 

  16. J.R. Ellis, K.A. Olive, Y. Santoso, New J. Phys. 4, 32 (2002). arXiv:hep-ph/0202110

    Article  MathSciNet  ADS  Google Scholar 

  17. H. Baer, C. Balazs, A. Belyaev, J.K. Mizukoshi, X. Tata, Y. Wang, J. High Energy Phys. 0207, 050 (2002). arXiv:hep-ph/0205325

    Article  MathSciNet  ADS  Google Scholar 

  18. R. Arnowitt, B. Dutta, arXiv:hep-ph/0211417

  19. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Lett. B 565, 176 (2003). arXiv:hep-ph/0303043

    Article  ADS  Google Scholar 

  20. H. Baer, C. Balazs, J. Cosmol. Astropart. Phys. 0305, 006 (2003). arXiv:hep-ph/0303114

    Article  ADS  Google Scholar 

  21. A.B. Lahanas, D.V. Nanopoulos, Phys. Lett. B 568, 55 (2003). arXiv:hep-ph/0303130

    Article  ADS  Google Scholar 

  22. U. Chattopadhyay, A. Corsetti, P. Nath, Phys. Rev. D 68, 035005 (2003). arXiv:hep-ph/0303201

    Article  ADS  Google Scholar 

  23. C. Munoz, Int. J. Mod. Phys. A 19, 3093 (2004). arXiv:hep-ph/0309346

    Article  ADS  Google Scholar 

  24. R. Arnowitt, B. Dutta, B. Hu, arXiv:hep-ph/0310103

  25. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev, X. Tata, Phys. Rev. D 71, 095008 (2005). arXiv:hep-ph/0412059

    Article  ADS  Google Scholar 

  26. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev, X. Tata, J. High Energy Phys. 0507, 065 (2005). hep-ph/0504001

    Article  ADS  Google Scholar 

  27. J.R. Ellis, K.A. Olive, P. Sandick, Phys. Rev. D 78, 075012 (2008). arXiv:0805.2343 [hep-ph]

    Article  ADS  Google Scholar 

  28. W. de Boer, C. Sander, Phys. Lett. B 585, 276 (2004). arXiv:hep-ph/0307049

    Article  ADS  Google Scholar 

  29. G. Belanger, F. Boudjema, A. Cottrant, A. Pukhov, A. Semenov, Nucl. Phys. B 706, 411 (2005). arXiv:hep-ph/0407218

    Article  ADS  Google Scholar 

  30. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Rev. D 69, 095004 (2004). arXiv:hep-ph/0310356

    Article  ADS  Google Scholar 

  31. J.R. Ellis, S. Heinemeyer, K.A. Olive, G. Weiglein, J. High Energy Phys. 0502, 013 (2005). arXiv:hep-ph/0411216

    Article  MathSciNet  ADS  Google Scholar 

  32. J.R. Ellis, D.V. Nanopoulos, K.A. Olive, Y. Santoso, Phys. Lett. B 633, 583 (2006). arXiv:hep-ph/0509331

    Article  ADS  Google Scholar 

  33. J.R. Ellis, S. Heinemeyer, K.A. Olive, G. Weiglein, J. High Energy Phys. 0605, 005 (2006). arXiv:hep-ph/0602220

    Article  ADS  Google Scholar 

  34. J. Ellis, S. Heinemeyer, K.A. Olive, A.M. Weber, G. Weiglein, J. High Energy Phys. 08, 083 (2007). arXiv:0706.0652 [hep-ph]

    Article  ADS  Google Scholar 

  35. J. Ellis, T. Hahn, S. Heinemeyer, K.A. Olive, G. Weiglein, J. High Energy Phys. 0710, 092 (2007). arXiv:0709.0098 [hep-ph]

    Article  ADS  Google Scholar 

  36. J.R. Ellis, S. Heinemeyer, K.A. Olive, G. Weiglein, Phys. Lett. B 653, 292 (2007). arXiv:0706.0977 [hep-ph]

    Article  ADS  Google Scholar 

  37. S. Heinemeyer, X. Miao, S. Su, G. Weiglein, J. High Energy Phys. 0808, 087 (2008). arXiv:0805.2359 [hep-ph]

    Article  ADS  Google Scholar 

  38. P. Bechtle, K. Desch, P. Wienemann, Comput. Phys. Commun. 174, 47 (2006). arXiv:hep-ph/0412012

    Article  ADS  Google Scholar 

  39. R. Lafaye, T. Plehn, M. Rauch, D. Zerwas, Eur. Phys. J. C 54, 617 (2008). arXiv:0709.3985 [hep-ph]

    Article  ADS  Google Scholar 

  40. E.A. Baltz, P. Gondolo, J. High Energy Phys. 0410, 052 (2004). arXiv:hep-ph/0407039

    Article  ADS  Google Scholar 

  41. B.C. Allanach, C.G. Lester, Phys. Rev. D 73, 015013 (2006). arXiv:hep-ph/0507283

    Article  ADS  Google Scholar 

  42. B.C. Allanach, Phys. Lett. B 635, 123 (2006). arXiv:hep-ph/0601089

    Article  ADS  Google Scholar 

  43. B.C. Allanach, C.G. Lester, A.M. Weber, J. High Energy Phys. 0612, 065 (2006). arXiv:hep-ph/0609295

    Article  MathSciNet  ADS  Google Scholar 

  44. B.C. Allanach, C.G. Lester, Comput. Phys. Commun. 179, 256 (2008). arXiv:0705.0486 [hep-ph]

    Article  ADS  Google Scholar 

  45. B.C. Allanach, K. Cranmer, C.G. Lester, A.M. Weber, J. High Energy Phys. 0708, 023 (2007). arXiv:0705.0487 [hep-ph]

    Article  ADS  Google Scholar 

  46. B.C. Allanach, D. Hooper, J. High Energy Phys. 0810, 071 (2008). arXiv:0806.1923 [hep-ph]

    Article  ADS  Google Scholar 

  47. F. Feroz, B.C. Allanach, M. Hobson, S.S. AbdusSalam, R. Trotta, A.M. Weber, J. High Energy Phys. 0810, 064 (2008). arXiv:0807.4512 [hep-ph]

    Article  ADS  Google Scholar 

  48. R.R. de Austri, R. Trotta, L. Roszkowski, J. High Energy Phys. 0605, 002 (2006). arXiv:hep-ph/0602028

    Article  Google Scholar 

  49. L. Roszkowski, R.R. de Austri, R. Trotta, J. High Energy Phys. 0704, 084 (2007). arXiv:hep-ph/0611173

    Article  ADS  Google Scholar 

  50. L. Roszkowski, R. Ruiz de Austri, R. Trotta, J. High Energy Phys. 0707, 075 (2007). arXiv:0705.2012 [hep-ph]

    Article  ADS  Google Scholar 

  51. L. Roszkowski, R.R. de Austri, J. Silk, R. Trotta, Phys. Lett. B 671, 10 (2009). arXiv:0707.0622 [astro-ph]

    Article  ADS  Google Scholar 

  52. R. Trotta, F. Feroz, M.P. Hobson, L. Roszkowski, R. Ruiz de Austri, J. High Energy Phys. 0812, 024 (2008). arXiv:0809.3792 [hep-ph]

    Article  ADS  Google Scholar 

  53. O. Buchmueller et al., Phys. Lett. B 657, 87 (2007). arXiv:0707.3447 [hep-ph]

    Article  ADS  Google Scholar 

  54. S.S. AbdusSalam, B.C. Allanach, M.J. Dolan, F. Feroz, M.P. Hobson, arXiv:0906.0957 [hep-ph]

  55. G. Belanger, F. Boudjema, A. Pukhov, R.K. Singh, arXiv:0906.5048 [hep-ph]

  56. S.S. AbdusSalam, B.C. Allanach, F. Quevedo, F. Feroz, M. Hobson, arXiv:0904.2548 [hep-ph]

  57. P. Bechtle, K. Desch, M. Uhlenbrock, P. Wienemann, arXiv:0907.2589 [hep-ph]

  58. D.E. Lopez-Fogliani, L. Roszkowski, R.R. de Austri, T.A. Varley, arXiv:0906.4911 [hep-ph]

  59. C. Balazs, D. Carter, arXiv:0906.5012 [hep-ph]

  60. S. Heinemeyer, M. Mondragón, G. Zoupanos, J. High Energy Phys. 0807, 135 (2008). arXiv:0712.3630 [hep-ph]

    Article  ADS  Google Scholar 

  61. C.F. Berger, J.S. Gainer, J.L. Hewett, T.G. Rizzo, J. High Energy Phys. 0902, 023 (2009). arXiv:0812.0980 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  62. M. Carena, A. Menon, C.E.M. Wagner, Phys. Rev. D 79, 075025 (2009). arXiv:0812.3594 [hep-ph]

    Article  ADS  Google Scholar 

  63. J. Ellis, K.A. Olive, P. Sandick, arXiv:0905.0107 [hep-ph]

  64. LEP Supersymmetry Working Group, http://lepsusy.web.cern.ch/lepsusy/

  65. M. Battaglia, A. De Roeck, J.R. Ellis, F. Gianotti, K.A. Olive, L. Pape, Eur. Phys. J. C 33, 273 (2004). arXiv:hep-ph/0306219

    Article  ADS  Google Scholar 

  66. J.R. Ellis, S. Heinemeyer, K.A. Olive, G. Weiglein, Phys. Lett. B 515, 348 (2001). arXiv:hep-ph/0105061

    Article  ADS  Google Scholar 

  67. S. Ambrosanio, A. Dedes, S. Heinemeyer, S. Su, G. Weiglein, Nucl. Phys. B 624, 3 (2002). arXiv:hep-ph/0106255

    Article  ADS  Google Scholar 

  68. S. Heinemeyer, W. Hollik, D. Stockinger, A.M. Weber, G. Weiglein, J. High Energy Phys. 0608, 052 (2006). arXiv:hep-ph/0604147

    Article  ADS  Google Scholar 

  69. S. Heinemeyer, W. Hollik, A.M. Weber, G. Weiglein, J. High Energy Phys. 0804, 039 (2008). arXiv:0710.2972 [hep-ph]

    Article  ADS  Google Scholar 

  70. Tevatron Electroweak Working Group and CDF Collaboration and D0 Collaboration, arXiv:0903.2503 [hep-ex]

  71. ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, SLD Collaboration, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group, Phys. Rep. 427, 257 (2006). arXiv:hep-ex/0509008

    ADS  Google Scholar 

  72. M. Verzocchi, talk at ICHEP 2008, Philadelphia, USA, August 2008

  73. LEP Electroweak Working Group, http://lepewwg.web.cern.ch/LEPEWWG/Welcome.html

  74. M. Misiak et al., Phys. Rev. Lett. 98, 022002 (2007). arXiv:hep-ph/0609232

    Article  ADS  Google Scholar 

  75. M. Ciuchini, G. Degrassi, P. Gambino, G.F. Giudice, Nucl. Phys. B 534, 3 (1998). arXiv:hep-ph/9806308

    Article  ADS  Google Scholar 

  76. G. Degrassi, P. Gambino, G.F. Giudice, J. High Energy Phys. 0012, 009 (2000). arXiv:hep-ph/0009337

    Article  ADS  Google Scholar 

  77. M.S. Carena, D. Garcia, U. Nierste, C.E.M. Wagner, Phys. Lett. B 499, 141 (2001). arXiv:hep-ph/0010003

    Article  ADS  Google Scholar 

  78. G. D’Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, Nucl. Phys. B 645, 155 (2002). arXiv:hep-ph/0207036

    Article  ADS  Google Scholar 

  79. E. Barberio et al. (Heavy Flavour Averaging Group (HFAG)), hep-ex/0603003, http://slac.stanford.edu/xorg/hfag/

  80. G. Isidori, A. Retico, J. High Energy Phys. 0111, 001 (2001). arXiv:hep-ph/0110121

    Article  ADS  Google Scholar 

  81. A.J. Buras, P.H. Chankowski, J. Rosiek, L. Slawianowska, Nucl. Phys. B 659, 3 (2003). hep-ph/0210145

    Article  ADS  Google Scholar 

  82. G. Isidori, P. Paradisi, Phys. Lett. B 639, 499 (2006). arXiv:hep-ph/0605012

    Article  ADS  Google Scholar 

  83. G. Isidori, F. Mescia, P. Paradisi, D. Temes, Phys. Rev. D 75, 115019 (2007). arXiv:hep-ph/0703035 and references therein

    Article  ADS  Google Scholar 

  84. A.G. Akeroyd, S. Recksiegel, J. Phys. G 29, 2311 (2003). arXiv:hep-ph/0306037

    Article  ADS  Google Scholar 

  85. R. Faccini et al., Flavour Phyiscs in the Quark Sector, CERN-PH-TH-2009-112 (submitted to Phys. Rep.)

  86. A. Gray et al. (HPQCD Collaboration), Phys. Rev. Lett. 95, 212001 (2005). hep-lat/0507015

    Article  ADS  Google Scholar 

  87. C. Bobeth, A.J. Buras, T. Ewerth, Nucl. Phys. B 713, 522 (2005). arXiv:hep-ph/0409293

    Article  MATH  ADS  Google Scholar 

  88. T. Huber, E. Lunghi, M. Misiak, D. Wyler, Nucl. Phys. B 740, 105 (2006). arXiv:hep-ph/0512066

    Article  ADS  Google Scholar 

  89. M. Antonelli et al. (FlaviaNet Working Group on Kaon Decays), arXiv:0801.1817 [hep-ph]

  90. A.J. Buras, P. Gambino, M. Gorbahn, S. Jager, L. Silvestrini, Nucl. Phys. B 592, 55 (2001). arXiv:hep-ph/0007313

    Article  ADS  Google Scholar 

  91. A.V. Artamonov et al. (E949 Collaboration), Phys. Rev. Lett. 101, 191802 (2008). arXiv:0808.2459 [hep-ex]

    Article  ADS  Google Scholar 

  92. M. Bona et al. (UTfit Collaboration), J. High Energy Phys. 0803, 049 (2008). arXiv:0707.0636 [hep-ph], and updated at http://www.utfit.org

    Article  ADS  Google Scholar 

  93. V. Lubicz, C. Tarantino, Nuovo Cimento B 123, 674 (2008). arXiv:0807.4605 [hep-lat]

    ADS  Google Scholar 

  94. T. Moroi, Phys. Rev. D 53, 6565 (1996) [Erratum: Phys. Rev. D 56, 4424 (1997)] arXiv:hep-ph/9512396

    Article  ADS  Google Scholar 

  95. G. Degrassi, G.F. Giudice, Phys. Rev. D 58, 053007 (1998). arXiv:hep-ph/9803384

    Article  ADS  Google Scholar 

  96. S. Heinemeyer, D. Stockinger, G. Weiglein, Nucl. Phys. B 690, 62 (2004). arXiv:hep-ph/0312264

    Article  MATH  ADS  Google Scholar 

  97. S. Heinemeyer, D. Stockinger, G. Weiglein, Nucl. Phys. B 699, 103 (2004). arXiv:hep-ph/0405255

    Article  MATH  ADS  Google Scholar 

  98. G.W. Bennett et al. (Muon G-2 Collaboration), Phys. Rev. D 73, 072003 (2006). arXiv:hep-ex/0602035

    Article  ADS  Google Scholar 

  99. M. Davier, Nucl. Phys. Proc. Suppl. 169, 288 (2007). arXiv:hep-ph/0701163

    Article  ADS  Google Scholar 

  100. D.W. Hertzog, J.P. Miller, E. de Rafael, B. Lee Roberts, D. Stockinger, arXiv:0705.4617 [hep-ph]

  101. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020

    Article  ADS  Google Scholar 

  102. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472

    ADS  Google Scholar 

  103. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320. See http://www.feynhiggs.de

    Article  MATH  ADS  Google Scholar 

  104. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, J. High Energy Phys. 0702, 047 (2007). arXiv:hep-ph/0611326

    Article  ADS  Google Scholar 

  105. R. Barate et al. (ALEPH, DELPHI, L3, OPAL Collaborations, LEP Working Group for Higgs boson searches), Phys. Lett. B 565, 61 (2003). arXiv:hep-ex/0306033

    Article  ADS  Google Scholar 

  106. S. Schael et al. (ALEPH, DELPHI, L3, OPAL Collaborations, LEP Working Group for Higgs boson searches), Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042

    Article  ADS  Google Scholar 

  107. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 176, 367 (2007). arXiv:hep-ph/0607059

    Article  ADS  Google Scholar 

  108. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 149, 103 (2002). arXiv:hep-ph/0112278

    Article  ADS  Google Scholar 

  109. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 174, 577 (2006). arXiv:hep-ph/0405253

    Article  ADS  Google Scholar 

  110. J. Dunkley et al. (WMAP Collaboration), Astrophys. J. Suppl. 180, 306 (2009). arXiv:0803.0586 [astro-ph]

    Article  ADS  Google Scholar 

  111. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, arXiv:0811.4169 [hep-ph]. See http://www.ippp.dur.ac.uk/HiggsBounds

  112. B.C. Allanach, Comput. Phys. Commun. 143, 305 (2002). arXiv:hep-ph/0104145

    Article  MATH  ADS  Google Scholar 

  113. A. Czarnecki, W.J. Marciano, Phys. Rev. D 64, 013014 (2001). arXiv:hep-ph/0102122

    Article  ADS  Google Scholar 

  114. J.P. Miller, E. de Rafael, B.L. Roberts, Rep. Prog. Phys. 70, 795 (2007). arXiv:hep-ph/0703049

    Article  ADS  Google Scholar 

  115. F. Jegerlehner, Acta Phys. Pol. B 38, 3021 (2007). arXiv:hep-ph/0703125

    ADS  Google Scholar 

  116. M. Passera, W.J. Marciano, A. Sirlin, Phys. Rev. D 78, 013009 (2008). arXiv:0804.1142 [hep-ph]

    Article  ADS  Google Scholar 

  117. M. Davier et al., arXiv:0906.5443 [hep-ph]

  118. F. Mahmoudi, Comput. Phys. Commun. 178, 745 (2008). arXiv:0710.2067 [hep-ph]

    Article  ADS  Google Scholar 

  119. F. Mahmoudi, arXiv:0808.3144 [hep-ph]

  120. D. Eriksson, F. Mahmoudi, O. Stal, J. High Energy Phys. 0811, 035 (2008). arXiv:0808.3551 [hep-ph]

    Article  ADS  Google Scholar 

  121. P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke, E.A. Baltz, New Astron. Rev. 49, 149 (2005)

    Article  ADS  Google Scholar 

  122. P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke, E.A. Baltz, J. Cosmol. Astropart. Phys. 0407, 008 (2004). arXiv:astro-ph/0406204

    Article  ADS  Google Scholar 

  123. P. Skands et al., J. High Energy Phys. 0407, 036 (2004). arXiv:hep-ph/0311123

    Article  ADS  Google Scholar 

  124. B. Allanach et al., Comput. Phys. Commun. 180, 8 (2009). arXiv:0801.0045 [hep-ph]

    Article  ADS  Google Scholar 

  125. B.C. Allanach, S. Kraml, W. Porod, J. High Energy Phys. 0303, 016 (2003). arXiv:hep-ph/0302102

    Article  ADS  Google Scholar 

  126. J. Ellis, K. Olive, Y. Santoso, Phys. Lett. B 539, 107 (2002). arXiv:hep-ph/0204192

    Article  ADS  Google Scholar 

  127. J.R. Ellis, T. Falk, K.A. Olive, Y. Santoso, Nucl. Phys. B 652, 259 (2003). arXiv:hep-ph/0210205

    Article  ADS  Google Scholar 

  128. G. Aad et al. (The ATLAS Collaboration), Expected performance of the ATLAS experiment—detector, trigger and physics. arXiv:0901.0512

  129. G.L. Bayatian et al. (CMS Collaboration), J. Phys. G 34, 995 (2007). CMS Technical Design Report, Volume II: Physics Performance, CERN-LHCC-2006-021, CMS-TDR-008-2; see: http://cmsdoc.cern.ch/cms/cpt/tdr/

    Article  ADS  Google Scholar 

  130. F. Gianotti et al., Eur. Phys. J. C 39, 293 (2005). arXiv:hep-ph/0204087

    Article  ADS  Google Scholar 

  131. TESLA Technical Design Report (TESLA Collaboration), http://tesla.desy.de/new_pages/TDR_CD/start.html

  132. J. Brau et al. (ILC Collaboration), ILC reference design report, vol. 1: executive summary. arXiv:0712.1950 [physics.acc-ph]

  133. G. Aarons et al. (ILC Collaboration), International linear collider reference design report, vol. 2: physics at the ILC. arXiv:0709.1893 [hep-ph]

  134. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Rev. D 69, 015005 (2004). arXiv:hep-ph/0308075

    Article  ADS  Google Scholar 

  135. J.R. Ellis, J. Giedt, O. Lebedev, K. Olive, M. Srednicki, Phys. Rev. D 78, 075006 (2008). arXiv:0806.3648 [hep-ph]

    Article  ADS  Google Scholar 

  136. M. Artuso et al., Eur. Phys. J. C 57, 309 (2008). arXiv:0801.1833 [hep-ph]

    Article  ADS  Google Scholar 

  137. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Rev. D 71, 095007 (2005). arXiv:hep-ph/0502001

    Article  ADS  Google Scholar 

  138. J.R. Ellis, K.A. Olive, C. Savage, Phys. Rev. D 77, 065026 (2008). arXiv:0801.3656 [hep-ph]

    Article  ADS  Google Scholar 

  139. J. Giedt, A.W. Thomas, R.D. Young, arXiv:0907.4177 [hep-ph]

  140. Z. Ahmed et al. (CDMS Collaboration), Phys. Rev. Lett. 102, 011301 (2009). arXiv:0802.3530 [astro-ph]

    Article  ADS  Google Scholar 

  141. J. Angle et al. (XENON Collaboration), Phys. Rev. Lett. 100, 021303 (2008). arXiv:0706.0039 [astro-ph]

    Article  ADS  Google Scholar 

  142. E. Aprile, L. Baudis (X. Collaboration), arXiv:0902.4253 [astro-ph.IM]

  143. SuperCDMS Development Project, Fermilab Proposal 0947, October 2004

  144. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Lett. B 603, 51 (2004). arXiv:hep-ph/0408118

    Article  ADS  Google Scholar 

  145. S. Ambrosanio, B. Mele, G. Montagna, O. Nicrosini, F. Piccinini, Nucl. Phys. B 478, 46 (1996). arXiv:hep-ph/9601292

    Article  ADS  Google Scholar 

  146. S.Y. Choi, J.S. Shim, H.S. Song, J. Song, C. Yu, Phys. Rev. D 60, 013007 (1999). arXiv:hep-ph/9901368

    Article  ADS  Google Scholar 

  147. H.K. Dreiner, O. Kittel, U. Langenfeld, Phys. Rev. D 74, 115010 (2006). arXiv:hep-ph/0610020

    Article  ADS  Google Scholar 

  148. M.S. Carena, S. Heinemeyer, C.E.M. Wagner, G. Weiglein, Eur. Phys. J. C 26, 601 (2003). arXiv:hep-ph/0202167

    Article  ADS  Google Scholar 

  149. M.S. Carena, S. Heinemeyer, C.E.M. Wagner, G. Weiglein, Eur. Phys. J. C 45, 797 (2006). arXiv:hep-ph/0511023

    Article  ADS  Google Scholar 

  150. S. Gennai, S. Heinemeyer, A. Kalinowski, R. Kinnunen, S. Lehti, A. Nikitenko, G. Weiglein, Eur. Phys. J. C 52, 383 (2007). arXiv:0704.0619 [hep-ph]

    Article  ADS  Google Scholar 

  151. H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983)

    Article  ADS  Google Scholar 

  152. J. Ellis, J. Hagelin, D. Nanopoulos, K. Olive, M. Srednicki, Nucl. Phys. B 238, 453 (1984)

    Article  ADS  Google Scholar 

  153. M.M. Nojiri, G. Polesello, D.R. Tovey, J. High Energy Phys. 0603, 063 (2006). arXiv:hep-ph/0512204

    Article  ADS  Google Scholar 

  154. E.A. Baltz, M. Battaglia, M.E. Peskin, T. Wizansky, Phys. Rev. D 74, 103521 (2006). arXiv:hep-ph/0602187

    Article  ADS  Google Scholar 

  155. M. Goebel, talk given at Rencontres de Moriond EW 2009

  156. Tevatron New Phenomena and Higgs Working Group, for the CDF and D0 Collaborations, FERMILAB-PUB-09-060-E. arXiv:0903.4001 [hep-ex]

  157. R. Gaitskell, J. Filippini, http://dmtools.berkeley.edu/limitplots/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Ronga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchmueller, O., Cavanaugh, R., De Roeck, A. et al. Likelihood functions for supersymmetric observables in frequentist analyses of the CMSSM and NUHM1. Eur. Phys. J. C 64, 391–415 (2009). https://doi.org/10.1140/epjc/s10052-009-1159-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-1159-z

Keywords

Navigation