Skip to main content
Log in

One-loop effective action for non-local modified Gauss–Bonnet gravity in de Sitter space

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We discuss the classical and quantum properties of non-local modified Gauss–Bonnet gravity in de Sitter space, using its equivalent representation via string-inspired local scalar-Gauss–Bonnet gravity with a scalar potential. A classical, multiple de Sitter universe solution is found where one of the de Sitter phases corresponds to the primordial inflationary epoch, while the other de Sitter space solution—the one with the smallest Hubble rate—describes the late-time acceleration of our universe. A Chameleon scenario for the theory under investigation is developed, and it is successfully used to show that the theory complies with gravitational tests. An explicit expression for the one-loop effective action for this non-local modified Gauss–Bonnet gravity in the de Sitter space is obtained. It is argued that this effective action might be an important step towards the solution of the cosmological constant problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nojiri, S.D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007). eConf C0602061, 06 (2006). arXiv:hep-th/0601213

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Deser, R.P. Woodard, Phys. Rev. Lett. 99, 111301 (2007). arXiv:0706.2151 [astro-ph]

    Article  MathSciNet  ADS  Google Scholar 

  3. C. Deffayet, R.P. Woodard, arXiv:0904.0961 [gr-qc]

  4. N.A. Koshelev, arXiv:0809.4927 [gr-qc]

  5. S. Nojiri, S.D. Odintsov, Phys. Lett. B 659, 821 (2008). arXiv:0708.0924 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  6. S. Jhingan, S. Nojiri, S.D. Odintsov, M. Sami, I. Thongkool, S. Zerbini, Phys. Lett. B 663, 424 (2008). arXiv:0803.2613 [hep-th]

    Article  ADS  Google Scholar 

  7. T. Koivisto, Phys. Rev. D 77, 123513 (2008). arXiv:0803.3399 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  8. T.S. Koivisto, Phys. Rev. D 78, 123505 (2008). arXiv:0807.3778 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Capozziello, E. Elizalde, S. Nojiri, S.D. Odintsov, Phys. Lett. B 671, 193 (2009). arXiv:0809.1535 [hep-th]

    Article  ADS  Google Scholar 

  10. I.Y. Aref’eva, A.S. Koshelev, S.Y. Vernov, Phys. Rev. D 72, 064017 (2005). arXiv:astro-ph/0507067

    Article  ADS  Google Scholar 

  11. G. Calcagni, J. High Energy Phys. 0605, 012 (2006). arXiv:hep-th/0512259

    Article  MathSciNet  ADS  Google Scholar 

  12. I.Y. Aref’eva, L.V. Joukovskaya, S.Y. Vernov, J. High Energy Phys. 0707, 087 (2007). arXiv:hep-th/0701184

    Article  MathSciNet  ADS  Google Scholar 

  13. G. Calcagni, G. Nardelli, arXiv:0904.4245 [hep-th]

  14. G. Calcagni, M. Montobbio, G. Nardelli, Phys. Rev. D 76, 126001 (2007). arXiv:0705.3043 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  15. S. Nojiri, S.D. Odintsov, M. Sasaki, Phys. Rev. D 71, 123509 (2005). arXiv:hep-th/0504052

    Article  ADS  Google Scholar 

  16. M. Sami, A. Toporensky, P.V. Tretjakov, S. Tsujikawa, Phys. Lett. B 619, 193 (2005)

    Article  ADS  Google Scholar 

  17. G. Calcagni, S. Tsujikawa, M. Sami, Class. Quantum Gravity 22, 3977 (2005). arXiv:hep-th/0505193

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. G. Calcagni, B. de Carlos, A. De Felice, Nucl. Phys. B 752, 404 (2006). arXiv:hep-th/0604201

    Article  MATH  ADS  Google Scholar 

  19. B.M. Leith, I.P. Neupane, J. Cosmol. Astropart. Phys. 0705, 019 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  20. S. Nojiri, S.D. Odintsov, P.V. Tretjakov, Phys. Lett. B 651, 224 (2007). arXiv:0704.2520 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Nojiri, S.D. Odintsov, M. Sami, Phys. Rev. D 74, 046004 (2006). arXiv:hep-th/0605039

    Article  ADS  Google Scholar 

  22. B.M.N. Carter, I.P. Neupane, J. Cosmol. Astropart. Phys. 0606, 004 (2006). arXiv:hep-th/0512262

    Google Scholar 

  23. T. Koivisto, D.F. Mota, Phys. Rev. D 75, 023518 (2007). arXiv:hep-th/0609155

    Article  ADS  Google Scholar 

  24. G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, S. Zerbini, Phys. Rev. D 75, 086002 (2007). arXiv:hep-th/0611198

    Article  MathSciNet  ADS  Google Scholar 

  25. M.R. Setare, E.N. Saridakis, Phys. Lett. B 670, 1 (2008)

    Article  ADS  Google Scholar 

  26. A.K. Sanyal, arXiv:0710.2450 [astro-ph]

  27. B.C. Paul, S. Ghose, arXiv:0809.4131 [hep-th]

  28. E. Elizalde, S. Jhingan, S. Nojiri, S.D. Odintsov, M. Sami, I. Thongkool, Eur. Phys. J. C 53, 447 (2008). arXiv:0705.1211 [hep-th]

    Article  ADS  Google Scholar 

  29. A. De Felice, T. Suyama, arXiv:0904.2092 [astro-ph.CO]

  30. Y. Ito, S. Nojiri, arXiv:0904.0367 [hep-th]

  31. J. Khoury, A. Weltman, Phys. Rev. Lett. 93, 171104 (2004). arXiv:astro-ph/0309300

    Article  ADS  Google Scholar 

  32. D.F. Mota, J.D. Barrow, Phys. Lett. B 581, 141 (2004). arXiv:astro-ph/0306047

    Article  ADS  Google Scholar 

  33. T.P. Sotiriou, V. Faraoni, S. Liberati, Int. J. Mod. Phys. D 17, 399 (2008). arXiv:0707.2748 [gr-qc]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. W. Hu, I. Sawicki, Phys. Rev. D 76, 064004 (2007)

    Article  ADS  Google Scholar 

  35. S. Nojiri, S.D. Odintsov, Phys. Lett. B 657, 238 (2007). arXiv:0707.1941 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  36. S. Nojiri, S.D. Odintsov, Phys. Rev. D 77, 026007 (2008). arXiv:0710.1738 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  37. G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, L. Sebastiani, S. Zerbini, Phys. Rev. D 77, 046009 (2008). arXiv:0712.4017 [hep-th]

    Article  ADS  Google Scholar 

  38. S.A. Appleby, R.A. Battye, Phys. Lett. B 654, 7 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  39. L. Pogosian, A. Silvestri, Phys. Rev. D 77, 023503 (2008)

    Article  ADS  Google Scholar 

  40. S. Nojiri, S.D. Odintsov, Phys. Lett. B 652, 343 (2007). arXiv:0706.1378 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  41. S. Capozziello, S. Tsujikawa, Phys. Rev. D 77, 107501 (2008)

    Article  ADS  Google Scholar 

  42. S. Tsujikawa, Phys. Rev. D 77, 023507 (2008). arXiv:0709.1391 [astro-ph]

    Article  MathSciNet  ADS  Google Scholar 

  43. I.L. Buchbinder, S.D. Odintsov, I.L. Shapiro, Effective Action in Quantum Gravity (IOP Publishing, Bristol, 1992)

    Google Scholar 

  44. G. Cognola, S. Zerbini, J. Phys. A 39, 6245 (2006). arXiv:hep-th/0511233

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. V. Faraoni, Phys. Rev. D 72, 124005 (2005). arXiv:gr-qc/0511094

    Article  MathSciNet  ADS  Google Scholar 

  46. G. Cognola, M. Gastaldi, S. Zerbini, Int. J. Theor. Phys. 47, 898 (2008). arXiv:gr-qc/0701138

    Article  MATH  MathSciNet  Google Scholar 

  47. G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, S. Zerbini, J. Cosmol. Astropart. Phys. 0502, 010 (2005). arXiv:hep-th/0501096

    Article  MathSciNet  ADS  Google Scholar 

  48. E.S. Fradkin, A.A. Tseytlin, Nucl. Phys. B 234, 472 (1984)

    Article  ADS  Google Scholar 

  49. E. Elizalde, L. Vanzo, S. Zerbini, Commun. Math. Phys. 194, 613 (1998). arXiv:hep-th/9701060

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko, S. Zerbini, Zeta Regularization Techniques with Applications (World Scientific, Singapore, 1994)

    MATH  Google Scholar 

  51. E. Elizalde, Ten Physical Applications of Spectral Zeta Functions. Lecture Notes in Physics (Springer, Berlin, 1995)

    MATH  Google Scholar 

  52. A.A. Bytsenko, G. Cognola, L. Vanzo, S. Zerbini, Phys. Rep. 266, 1 (1996). arXiv:hep-th/9505061

    Article  MathSciNet  Google Scholar 

  53. A.A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti, S. Zerbini, Analytic Aspects of Quantum Fields (World Scientific, Singapore, 2003)

    Google Scholar 

  54. N.C. Tsamis, R.P. Woodard, Class. Quantum Gravity 26, 105006 (2009). arXiv:0807.5006 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  55. D. Benedetti, P.F. Machado, F. Saueressig, arXiv:0902.4630 [hep-th]

  56. L.N. Granda, S.D. Odintsov, Phys. Lett. B 409, 206 (1997). arXiv:hep-th/9706062

    Article  MathSciNet  ADS  Google Scholar 

  57. A. Codello, R. Percacci, C. Rahmede, Ann. Phys. 324, 414 (2009). arXiv:0805.2909 [hep-th]

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Cognola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cognola, G., Elizalde, E., Nojiri, S. et al. One-loop effective action for non-local modified Gauss–Bonnet gravity in de Sitter space. Eur. Phys. J. C 64, 483–494 (2009). https://doi.org/10.1140/epjc/s10052-009-1154-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-1154-4

Keywords

Navigation