Abstract
The production of a stochastic background of relic gravitational waves is well known in various works in the literature, where, by using the so called adiabatically-amplified zero-point fluctuations process, it has been shown how the standard inflationary scenario for the early universe can in principle provide a distinctive spectrum of relic gravitational waves. In this paper, it is shown that, in general, f(R) theories of gravity produce a third massive polarization of gravitational waves and the primordial production of this polarization is analyzed adapting the adiabatically-amplified zero-point fluctuations process at this case. In this way, previous results, where only particular cases of f(R) theories have been analyzed, will be generalized.
The presence of the mass could also have important applications in cosmology, because the fact that gravitational waves can have mass could give a contribution to the dark matter of the Universe.
An upper bound for these relic gravitational waves, which arises from the WMAP constrains, is also mentioned.
At the end of the paper, the potential detection of such massive gravitational waves using interferometers like Virgo and LIGO is discussed.
This is a preview of subscription content, access via your institution.
References
F. Acernese et al. (The Virgo Collaboration), Class. Quantum Gravity 24(19), S381–S388 (2007)
C. Corda, Astropart. Phys. 27(6), 539–549 (2007) ;
C. Corda, Int. J. Mod. Phys. D 16(9), 1497–1517 (2007)
B. Willke et al., Class. Quantum Gravity 23(8), S207–S214 (2006)
D. Sigg (for the LIGO Scientific Collaboration), www.ligo.org/pdf_public/P050036.pdf
B. Abbott et al. (The LIGO Scientific Collaboration), Phys. Rev. D 72, 042002 (2005)
M. Ando (The TAMA Collaboration), Class. Quantum Gravity 19(7), 1615–1621 (2002)
D. Tatsumi, Y. Tsunesada (The TAMA Collaboration), Class. Quantum Gravity 21(5), S451–S456 (2004)
C. Corda, J. Cosmol. Astropart. Phys. 4, 009 (2007)
C. Corda, Int. J. Mod. Phys. A 23(10), 1521–1535 (2008)
G. Allemandi, M. Francaviglia, M.L. Ruggiero, A. Tartaglia, Gen. Relativ. Gravit. 37, 11 (2005)
S. Capozziello, C. Corda, Int. J. Mod. Phys. D 15, 1119–1150 (2006)
C. Corda, Response of laser interferometers to scalar gravitational waves, in Gravitational Waves Data Analysis Workshop in the General Relativity Trimester of the Institute Henri Poincare, Paris, 13–17 November 2006. On the web in www.luth2.obspm.fr/IHP06/workshops/gwdata/corda.pdf
C. Corda, Astropart. Phys. 28, 247–250 (2007)
M. Shibata, K. Nakao, T. Nakamura, Phys. Rev. D 50, 7304 (1994)
M. Maggiore, A. Nicolis, Phys. Rev. D 62, 024004 (2000); also in gr-qc/9907055
M.E. Tobar, T. Suzuki, K. Kuroda, Phys. Rev. D 59, 102002 (1999)
K. Nakao, T. Harada, M. Shibata, S. Kawamura, T. Nakamura, Phys. Rev. D 63, 082001 (2001)
C. Corda, M.F. De Laurentis, in Proceedings of the 10th ICATPP Conference on Astroparticle, Particle, Space Physics, Detectors and Medical Physics—Applications, Villa Olmo, Como, Italy (8–12 October 2007)
C. Corda, Mod. Phys. Lett. A 22(16), 1167–1173 (2007)
S. Capozziello, C. Corda, M.F. De Laurentis, Mod. Phys. Lett. A 22(15), 1097–1104 (2007)
C. Corda, Mod. Phys. Lett. A 22(23), 1727–1735 (2007)
C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)
N. Bonasia, M. Gasperini, Phys. Rev. D 71, 104020 (2005)
B. Allen, in Proceedings of the Les Houches School on Astrophysical Sources of Gravitational Waves, ed. by J.-A. Marck, J.-P. Lasota (Cambridge University Press, Cambridge, 1998)
B. Allen, Phys. Rev. D 37, 2078 (1988)
L.P. Grishchuk et al., Phys. Uspekhi 44, 1–51 (2001)
L.P. Grishchuk et al., Uspekhi Fiz. Nauk 171, 3 (2001)
C. Corda, S. Capozziello, M.F. De Laurentis, in Proceedings of the Fourth Italian-Sino Workshop on Relativistic Astrophysics, 20–30 July 2007, Pescara, Italy. AIP Conference Proceedings, vol. 966 (2007), pp. 257–263
S. Capozziello, C. Corda, M.F. De Laurentis, Mod. Phys. Lett. A 22(35), 2647–2655 (2007)
C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, New York, 1973)
L. Landau, E. Lifsits, Teoria dei Campi, 3 edn. (Editori Riuniti, Rome, 1999)
E. Elizalde, S. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 043539 (2004)
G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, L. Sebastiani, S. Zerbini, Phys. Rev. D 77, 046009 (2008)
T. Inagaky, S. Nojiri, S.D. Odintsov, J. Cosmol. Astropart. Phys. 6, 010 (2005)
G. Watson, An Exposition on Inflationary Cosmology (North Carolina University Press, Chapel Hill, 2000)
A. Guth, Phys. Rev. 23, 347 (1981)
C.L. Bennett et al., Astrophys. J. Suppl. Ser. 148, 1 (2003)
D.N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 195 (2003)
C. Corda, Astropart. Phys. 30(4), 209–215 (2008)
Private communication with referees
M. Fierz, W. Pauli, Proc. R. Soc. A 173, 211 (1939)
M. Fierz, W. Pauli, Helv. Phys. Acta 12, 297 (1939)
A.A. Logunov, M.A. Mestvirishvili, Theor. Math. Phys. 65, 971 (1986)
S.S. Gershtein, A.A. Logunov, M.A. Mestvirishvili, Phys. At. Nucl. 61, 1420 (1998)
A.A. Logunov, M.A. Mestvirishvili, gr-qc/9907021
D. Bessada, O. Miranda, Class. Quantum Gravity 26, 045005 (2009); also in 0901.1119 [gr-qc]
A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)
A.A. Starobinsky, JETP Lett. 34, 438 (1982)
S. Capozziello, M.F. De Laurentis, M. Francaviglia, Astropart. Phys. 2(2), 125–129 (2008)
S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115–146 (2007)
T.P. Sotiriou, V. Faraoni, arXiv:0805.1726
S. Capozziello, M. Francaviglia, Gen. Relativ. Gravit. 40, 2–3 (2008)
R.A. Hulse, J.H. Taylor, Astrophys. J. Lett. 195, 151 (1975)
S. Capozziello, C. Corda, M.F. De Laurentis, Phys. Lett. B 669(5), 255–259 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Corda, C. Massive relic gravitational waves from f(R) theories of gravity: production and potential detection. Eur. Phys. J. C 65, 257–267 (2010). https://doi.org/10.1140/epjc/s10052-009-1100-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1140/epjc/s10052-009-1100-5