Skip to main content
Log in

A model for net-baryon rapidity distribution

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In nuclear collisions, a sizable fraction of the available energy is carried away by baryons. As baryon number is conserved, the net-baryon \(B-\bar{B}\) retains information on the energy-momentum carried by the incoming nuclei. A simple and consistent model for net-baryon production in high energy proton–proton and nucleus–nucleus collisions is presented. The basic ingredients of the model are valence string formation based on standard PDFs with QCD evolution and string fragmentation via the Schwinger mechanism. The results of the model are presented and compared with data at different centre-of-mass energies and centralities, as well as with existing models. These results show that a good description of the main features of the net-baryon data is possible in the framework of a simplistic model, with the advantage of making the fundamental production mechanisms manifest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kittel, E.A. De Wolf, Soft Multihadron Dynamics (World Scientific, Singapore, 2005). ISBN 981-256-295-8

    Google Scholar 

  2. L. Van Hove, S. Pokorski, Nucl. Phys. B 86, 245 (1975)

    Google Scholar 

  3. L. Van Hove, Acta Phys. Pol. B 7, 339 (1976)

    Google Scholar 

  4. R.P. Feynman, Phys. Rev. Lett. 23 (1969)

  5. J. Dias de Deus, J.G. Milhano, Phys. Lett. B 662, 129 (2008)

    ADS  Google Scholar 

  6. B.B. Back, Phys. Rev. C 72, 064906 (2005)

    Article  ADS  Google Scholar 

  7. N.N. Kalmykov, S.S. Ostapchenko, Yad. Fiz. 56, 105 (1993)

    Google Scholar 

  8. N.N. Kalmykov, S.S. Ostapchenko, Phys. At. Nucl. 56(3), 346 (1993)

    Google Scholar 

  9. N.N. Kalmykov, S.S. Ostapchenko, A.I. Pavlov, Izv. RAN Ser. Fiz. 58(12), 21 (1994)

    Google Scholar 

  10. N.N. Kalmykov, S.S. Ostapchenko, Bull. Russ. Acad. Sci. (Phys.) 58, 1966 (1994)

    Google Scholar 

  11. N.N. Kalmykov, S.S. Ostapchenko, Nucl. Phys. B (Proc. Suppl.) 52 B, 17 (1997)

    Article  ADS  Google Scholar 

  12. S.S. Ostapchenko, Nucl. Phys. B (Proc. Suppl.) 151, 143 (2006)

    Article  ADS  Google Scholar 

  13. S.S. Ostapchenko, Nucl. Phys. B (Proc. Suppl.) 151, 147 (2006)

    Article  ADS  Google Scholar 

  14. S.S. Ostapchenko, Phys. Rev. D 74, 014026 (2006)

    Article  ADS  Google Scholar 

  15. S.S. Ostapchenko, private communications

  16. K. Werner, F.M. Liu, T. Pierog, Phys. Rev. C 74, 044902 (2006)

    Article  ADS  Google Scholar 

  17. K. Werner, private communication

  18. R.S. Fletcher, T.K. Gaisser, P. Lipari, T. Stanev, Phys. Rev. D 50, 5710 (1994)

    Article  ADS  Google Scholar 

  19. J. Engel, T.K. Gaisser, P. Lipari, T. Stanev, Phys. Rev. D 46, 5013 (1992)

    Article  ADS  Google Scholar 

  20. R. Engel, T.K. Gaisser, P. Lipari, T. Stanev, Proc. 26th ICRC, Salt Lake City (USA), vol. 1 (1999), p. 415

  21. R. Conceição et al., Net-baryon physics: basic mechanisms, in Proceedings of the 21st European Cosmic Ray Conference, Kosic̆e, Slovakia (2008)

  22. J. Alvarez-Muñiz, R. Conceição, J. Dias de Deus, M.C. Espírito Santo, J.G. Milhano, M. Pimenta, arXiv:0711.1468 [hep-ph]

  23. A. Capella, U. Sukhatme, C.-I. Tan, J. Tran Thanh Van, Phys. Rep. 236, 225–329 (1994)

    Article  ADS  Google Scholar 

  24. R.J. Glauber, in Lectures in Theoretical Physics, vol. 1, ed. by W.E. Brittin, L.G. Dunham (Interscience, New York, 1959), p. 315

    Google Scholar 

  25. M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Annu. Rev. Nucl. Part. Sci. 57, 205 (2007)

    Article  ADS  Google Scholar 

  26. I.G. Bearden (BRAHMS Collab.), Phys. Rev. Lett. 93, 102301 (2004)

    Article  ADS  Google Scholar 

  27. I.C. Arsene et al. (BRAHMS Collab.), Phys. Rev. Lett. B. (submitted). arXiv:0901.0872v1 [hep-ex]

  28. H. Appelshauser (NA49 Collab.), Phys. Rev. Lett. 82, 2471 (1999)

    Article  ADS  Google Scholar 

  29. D. Röhrich (for the NA49 Collab.), Nucl. Phys. A 663–664, 713c (2000)

    Article  Google Scholar 

  30. G.E. Cooper (for the NA49 Collab.), Nucl. Phys. A 661, 362c (1999)

    Article  ADS  Google Scholar 

  31. L. Ahle (E802 Collab.), Phys. Rev. C 60, 064901 (1999)

    Article  ADS  Google Scholar 

  32. J. Barette (E877 Collab.), Phys. Rev. C 62, 024901 (2000)

    Article  ADS  Google Scholar 

  33. B.B. Back (E917 Collab.), Phys. Rev. C 66, 054901 (2002)

    Article  ADS  Google Scholar 

  34. C.E. Aguiar, R. Andrade, F. Grassi, Y. Hama, T. Kodama, T. Osada, O. Socolowski Jr., Braz. J. Phys. 34(1A), 319 (2004)

    Google Scholar 

  35. S.A. Bass, B. Muller, D.K. Srivastava, Phys. Rev. Lett. 91, 052302 (2003)

    Article  ADS  Google Scholar 

  36. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P. Nadolsky, W.K. Tung, J. High Energy Phys. 0207, 012 (2002)

    Article  ADS  Google Scholar 

  37. D. Stump, J. Huston, J. Pumplin, W.K. Tung, H.L. Lai, S. Kuhlmann, J. Owens, J. High Energy Phys. 0310, 046 (2003)

    Article  ADS  Google Scholar 

  38. S. Kretzer, H.L. Lai, F. Olness, W.K. Tung, Phys. Rev. D 69, 114005 (2004)

    Article  ADS  Google Scholar 

  39. D. Kharzeev, Phys. Lett. B 378, 238 (1996)

    Article  ADS  Google Scholar 

  40. A. Capella, B.Z. Kopeliovich, Phys. Lett. B 381, 325 (1996)

    Article  ADS  Google Scholar 

  41. S.E. Vance, M. Gyulassy, X.N. Wang, Phys. Lett. B 443, 45 (1998)

    Article  ADS  Google Scholar 

  42. S.E. Vance, M. Gyulassy, Phys. Rev. Lett. 83, 1735 (1999)

    Article  ADS  Google Scholar 

  43. G.H. Arakelian, A. Capella, A.B. Kaidalov, Yu.M. Shabelski, Eur. Phys. J. C 26, 81 (2002)

    Article  ADS  Google Scholar 

  44. F. Bopp, Yu.M. Shabelski, Eur. Phys. J. A 28, 237 (2006)

    Article  ADS  Google Scholar 

  45. B. Andersson, G. Gustafson, T. Sjöstrand, Nucl. Phys. B 197, 45 (1982)

    Article  ADS  Google Scholar 

  46. B. Andersson, G. Gustafson, T. Sjöstrand, Phys. Scr. 32, 574 (1985)

    Article  ADS  Google Scholar 

  47. P. Edén, G. Gustafson, Z. Phys. C 75, 41 (1997)

    Article  Google Scholar 

  48. K.J. Eskola, V.J. Kolhinen, C.A. Salgado, Eur. Phys. J. C 9, 61 (1999)

    ADS  Google Scholar 

  49. K.J. Eskola, V.J. Kolhinen, P.V. Ruuskanen, Nucl. Phys. B 535, 351 (1998)

    Article  ADS  Google Scholar 

  50. D. de Florian, R. Sassot, Phys. Rev. D 69, 074028 (2004)

    Article  ADS  Google Scholar 

  51. V.A. Abramovsky, E.V. Gedalin, E.G. Gurvich, O.V. Kancheli, Sov. J. Nucl. Phys. 53, 172–176 (1991)

    Google Scholar 

  52. N.S. Amelin, N. Armesto, C. Pajares, D. Sousa, Eur. Phys. J. C 22, 149–163 (2001)

    Article  ADS  Google Scholar 

  53. D. Kharzeev, E. Levin, M. Nardi, Nucl. Phys. A 747, 609 (2005)

    Article  ADS  Google Scholar 

  54. J. Alvarez-Muñiz, P. Brogueira, R. Conceição, J. Dias de Deus, M.C. Espírito Santo, M. Pimenta, Astropart. Phys. 27, 271 (2007)

    Article  ADS  Google Scholar 

  55. J. Dias de Deus, M.C. Espírito Santo, M. Pimenta, C. Pajares, Phys. Rev. Lett. 96, 162001 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Conceição.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez-Muñiz, J., Conceição, R., Dias de Deus, J. et al. A model for net-baryon rapidity distribution. Eur. Phys. J. C 61, 391–399 (2009). https://doi.org/10.1140/epjc/s10052-009-1029-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-1029-8

Keywords

Navigation