Skip to main content

Real-time propagators at finite temperature and chemical potential

Abstract

We derive a form of spectral representations for all bosonic and fermionic propagators in the real-time formulation of field theory at finite temperature and chemical potential. Besides being simple and symmetrical between the bosonic and the fermionic types, these representations depend explicitly on analytic functions only. This property allows for a simple evaluation of loop integrals in the energy variables over propagators in this form, even in the presence of chemical potentials, which is not possible for their conventional form.

This is a preview of subscription content, access via your institution.

References

  1. G.W. Semenoff, H. Umezawa, Nucl. Phys. B 220, 196 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  2. A.J. Niemi, G.W. Semenoff, Ann. Phys. 152, 105 (1984)

    Article  ADS  Google Scholar 

  3. R.L. Kobes, G.W. Semenoff, Nucl. Phys. B 260, 714 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  4. R.L. Kobes, G.W. Semenoff, N. Weiss, Z. Phys. C 29, 371 (1985)

    Article  ADS  Google Scholar 

  5. N.P. Landsmann, Ch.G. van Weert, Phys. Rep. C 145, 141 (1987)

    Article  ADS  Google Scholar 

  6. H. Leutwyler, A.V. Smilga, Nucl. Phys. B 342, 302 (1990)

    Article  ADS  Google Scholar 

  7. A. Schenk, Phys. Rev. D 47, 5138 (1993)

    Article  ADS  Google Scholar 

  8. D. Toublan, Phys. Rev. D 56, 5629 (1997)

    Article  ADS  Google Scholar 

  9. J.F. Nieves, Phys. Rev. D 42, 4123 (1990)

    Article  ADS  Google Scholar 

  10. R.D. Pisarski, M. Tytgat, Phys. Rev. D 54, 2989 (1996)

    Article  ADS  Google Scholar 

  11. S. Mallik, A. Nyffeler, Phys. Rev. C 63, 065204 (2001)

    Article  ADS  Google Scholar 

  12. S. Mallik, S. Sarkar, Phys. Rev. D 65, 016002 (2001)

    Article  ADS  Google Scholar 

  13. G. Källen, Helv. Phys. Acta 25, 417 (1952)

    MATH  Google Scholar 

  14. H. Lehmann, Nuovo Cim. 11, 342 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  15. R.L. Mills, Propagators for Many-Particle Systems (Gordon & Breach, New York, 1969)

    Google Scholar 

  16. R. Kubo, J. Phys. Soc., Jpn. 12, 570 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  17. P.C. Martin, J. Schwinger, Phys. Rev. 115, 1342 (1959)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. S. Weinberg, The Quantum Theory of Fields, vol. I (Cambridge University Press, Cambridge, 1995), p. 457

    Google Scholar 

  19. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (Dover, New York, 2003)

    Google Scholar 

  20. F. de Jong, H. Lenske, Phys. Rev. C 56, 154 (1997)

    Article  ADS  Google Scholar 

  21. H.A. Weldon, Phys. Rev. D 28, 2007 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mallik.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mallik, S., Sarkar, S. Real-time propagators at finite temperature and chemical potential. Eur. Phys. J. C 61, 489–494 (2009). https://doi.org/10.1140/epjc/s10052-009-0990-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-0990-6

PACS

  • 11.10.Wx