Skip to main content

Advertisement

Log in

Holographic dark energy in Brans–Dicke theory

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In this paper, the holographic dark-energy model is considered in Brans–Dicke theory, where the holographic dark-energy density ρ Λ =3c 2 M 2pl L −2 is replaced by ρ h=3c 2 Φ(t)L −2. Here \(\varPhi (t)=\frac{1}{8\pi G}\) is the time-variable Newton constant. With this replacement, it is found that no accelerated expansion for the universe will be achieved when the Hubble horizon is taken to play the role of an IR cut-off. When the event horizon is adopted as the IR cut-off, accelerated expansion for the universe is obtained. In this case, the equation of state of holographic dark energy, w h, takes the modified form \(w_{\mathrm{h}}=-\frac{1}{3}(1+\alpha+\frac{2}{c}\sqrt{ \varOmega _{\mathrm{h}}})\) . In the limit α→0, the ‘standard’ holographic dark energy is recovered. In the holographic dark-energy dominated epoch, power-law and de Sitter time-space solutions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.G. Riess et al., Astron. J. 116, 1009 (1998). astro-ph/9805201

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999). astro-ph/9812133

    Article  Google Scholar 

  3. D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003). astro-ph/0302209

    Article  ADS  Google Scholar 

  4. D.N. Spergel et al., astro-ph/0603449 (2006)

  5. M. Tegmark et al., Phys. Rev. D 69, 103501 (2004). astro-ph/0310723

    Article  ADS  Google Scholar 

  6. M. Tegmark et al., Astrophys. J. 606, 702 (2004). astro-ph/0310725

    Article  ADS  Google Scholar 

  7. I. Zlatev, L. Wang, P.J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999). astro-ph/9807002

    Article  ADS  Google Scholar 

  8. P.J. Steinhardt, L. Wang, I. Zlatev, Phys. Rev. D 59, 123504 (1999) astro-ph/9812313

    Article  ADS  Google Scholar 

  9. M.S. Turner, Int. J. Mod. Phys. A 17S1, 180 (2002). astro-ph/0202008

    Article  Google Scholar 

  10. V. Sahni, Class. Quantum Gravity 19, 3435 (2002). astro-ph/0202076

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003). astro-ph/0302506

    Article  ADS  Google Scholar 

  12. B. Feng et al., Phys. Lett. B 607, 35 (2005)

    Article  ADS  Google Scholar 

  13. S.D.H. Hsu, Phys. Lett. B 594, 13 (2004). arXiv:hep-th/0403052

    Article  ADS  Google Scholar 

  14. M. Li, Phys. Lett. B 603, 1 (2004). hep-th/0403127

    Article  ADS  Google Scholar 

  15. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000). arXiv:astro-ph/9904398

    ADS  Google Scholar 

  17. S.M. Carroll, Living Rev. Relativ. 4, 1 (2001). arXiv:astro-ph/0004075

    ADS  Google Scholar 

  18. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003). arXiv:astro-ph/0207347

    Article  ADS  MathSciNet  Google Scholar 

  19. T. Padmanabhan, Phys. Rep. 380, 235 (2003). arXiv:hep-th/0212290

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006). arXiv:hep-th/0603057

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. C.H. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. B. Bertotti, L. Iess, P. Tortora, Nature 425, 374 (2003)

    Article  ADS  Google Scholar 

  23. M.P. Dabrowski, T. Denkiewicz, D. Blaschke, Ann. Phys. 16, 237 (2007). arXiv:hep-th/0507068

    Article  MATH  MathSciNet  Google Scholar 

  24. V. Acquaviva, L. Verde, JCAP 12, 001 (2007). arXiv:0709.0082 [astro-ph]

    ADS  Google Scholar 

  25. C. Mathiazhagan, V.B. Johri, Class. Quantum Gravity 1, L29 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  26. D. La, P.J. Steinhardt, Phys. Rev. Lett. 62, 376 (1989)

    Article  ADS  Google Scholar 

  27. S. Das, N. Banerjee, arXiv:0803.3936

  28. Y. Gong, Phys. Rev. D 61, 043505 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  29. Y. Gong, Phys. Rev. D 70, 064029 (2004). hep-th/0404030

    Article  ADS  Google Scholar 

  30. M.R. Setare, Phys. Lett. B 644, 99 (2007). hep-th/0610190

    Article  ADS  MathSciNet  Google Scholar 

  31. N. Banerjee, D. Pavon, Phys. Lett. B 647, 447 (2007)

    ADS  MathSciNet  Google Scholar 

  32. B. Nayak, L.P. Singh, arXiv:0803.2930

  33. Q.G. Huang, Y.G. Gong, JCAP 0408, 006 (2004). arXiv:astro-ph/0403590

    ADS  Google Scholar 

  34. K. Enqvist, S. Hannestad, M.S. Sloth, JCAP 0502, 004 (2005). arXiv:astro-ph/0409275

    ADS  Google Scholar 

  35. J.Y. Shen, B. Wang, E. Abdalla, R.K. Su, Phys. Lett. B 609, 200 (2005). arXiv:hep-th/0412227

    Article  ADS  Google Scholar 

  36. H.C. Kao, W.L. Lee, F.L. Lin, Phys. Rev. D 71, 123518 (2005). arXiv:astro-ph/0501487

    Article  ADS  Google Scholar 

  37. X. Zhang, F.Q. Wu, Phys. Rev. D 72, 043524 (2005). arXiv:astro-ph/0506310

    Article  ADS  Google Scholar 

  38. Z. Chang, F.Q. Wu, X. Zhang, Phys. Lett. B 633, 14 (2006). arXiv:astro-ph/0509531

    Article  ADS  Google Scholar 

  39. Z.L. Yi, T.J. Zhang, Mod. Phys. Lett. A 22, 41 (2007). arXiv:astro-ph/0605596

    Article  ADS  Google Scholar 

  40. X. Zhang, F.Q. Wu, Phys. Rev. D 76, 023502 (2007)

    Article  ADS  Google Scholar 

  41. G.T. Gillies, Rep. Prog. Phys. 60, 151 (1997)

    Article  ADS  Google Scholar 

  42. O. Lahav, A.R. Liddle, J. Phys. G 33, 1 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Li, W. & Lu, J. Holographic dark energy in Brans–Dicke theory. Eur. Phys. J. C 60, 135–140 (2009). https://doi.org/10.1140/epjc/s10052-008-0858-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0858-1

Keywords

Navigation