Skip to main content
Log in

Berry curvature in graphene: a new approach

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In the present paper we have directly computed the Berry curvature terms relevant for graphene in the presence of an inhomogeneous lattice distortion. We have employed the generalized Foldy–Wouthuysen framework, developed by some of us. We show that a non-constant lattice distortion leads to a valley–orbit coupling which is responsible for a valley–Hall effect. This is similar to the valley–Hall effect induced by an electric field proposed in the literature and is the analogue of the spin–Hall effect in semiconductors. Our general expressions for Berry curvature, for the special case of homogeneous distortion, reduce to the previously obtained results. We also discuss the Berry phase in the quantization of cyclotron motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov et al., Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, arXiv:0706.3016 (2007)

  3. G. Semenoff, Phys. Rev. Lett. 53, 2449 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  4. L.L. Foldy, S.A. Wouthuysen, Phys. Rev. 78, 29 (1950)

    Article  MATH  ADS  Google Scholar 

  5. A. Berard, H. Mohrbach, Phys. Rev. D 69, 127701 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Berard, H. Mohrbach, Phys. Lett. A 352, 190 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. P. Gosselin, A. Berard, H. Mohrbach, Phys. Rev. D 75, 084035 (2007)

    Article  ADS  Google Scholar 

  8. P. Gosselin, A. Berard, H. Mohrbach, Europhys. Lett. 76, 651 (2006)

    Article  ADS  Google Scholar 

  9. P. Gosselin, A. Berard, H. Mohrbach, Phys. Lett. A 368, 356 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Gosselin, A. Bérard, H. Mohrbach, Eur. Phys. J. B 58, 137 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  11. P. Gosselin, J. Hanssen, H. Mohrbach, Phys. Rev. D 77, 085008 (2008)

    Article  ADS  Google Scholar 

  12. M.V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. A. Shapere, F. Wilczek, Geometric Phases in Physics (World Scientific, Singapore, 1989)

    MATH  Google Scholar 

  14. D. Xiao, J. Shi, Q. Niu, Phys. Rev. Lett. 95, 137204 (2005)

    Article  ADS  Google Scholar 

  15. C. Duval, Z. Horvath, P. Horvathy, L. Martina, P. Stichel, Phys. Rev. Lett. 96, 099701 (2006)

    Article  ADS  Google Scholar 

  16. K.Y. Bliokh, Europhys. Lett. 72, 7 (2005)

    Article  ADS  Google Scholar 

  17. K.Y. Bliokh, Phys. Lett. A 351, 123 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. K.Y. Bliokh, Y.P. Bliokh, Ann. Phys. (N.Y.) 319, 13 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. W. Greiner, Relativistic Quantum Mechanics (Springer, Berlin, 1990)

    MATH  Google Scholar 

  20. H.S. Snyder, Phys. Rev. 71, 68 (1947)

    Article  ADS  Google Scholar 

  21. H. Longuet-Higgins et al., Proc. R. Soc. A 224, 1 (1958)

    Article  ADS  Google Scholar 

  22. C. Mead, D. Truhlar, J. Chem. Phys. 70, 2284 (1979)

    Article  ADS  Google Scholar 

  23. D. Xiao, W. Yao, Q. Niu, Phys. Rev. Lett. 99, 236809 (2007)

    Article  ADS  Google Scholar 

  24. M.C. Chang et al., J. Phys.: Condens. Matter 20, 193202 (2008)

    Article  ADS  Google Scholar 

  25. S. Murakami, N. Nagaosa, S.-C. Zhang, Science 301, 1348 (2003)

    Article  ADS  Google Scholar 

  26. J. Sinova et al., Phys. Rev. Lett. 92, 126603 (2004)

    Article  ADS  Google Scholar 

  27. B.A. Bernevig, S.C. Zhang, Phys. Rev. Lett. 96, 106802 (2006)

    Article  ADS  Google Scholar 

  28. J.N. Fuchs, P. Lederer, Phys. Rev. Lett. 98, 016803 (2007)

    Article  ADS  Google Scholar 

  29. G.P. Mikitik, Yu.V. Sharlai, Phys. Rev. Lett. 82, 2147 (1999)

    Article  ADS  Google Scholar 

  30. J.N. Fuchs, G. Montambaux, F. Piéchon, M. Goerbig, Phys. Rev. B 78, 045415 (2008). arXiv:0803.0912

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subir Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gosselin, P., Bérard, A., Mohrbach, H. et al. Berry curvature in graphene: a new approach. Eur. Phys. J. C 59, 883–889 (2009). https://doi.org/10.1140/epjc/s10052-008-0839-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0839-4

Keywords

Navigation