Skip to main content
Log in

Search for Higgs bosons in SUSY cascades in CMS and dark matter with non-universal gaugino masses

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In grand-unified theories (GUT), non-universal boundary conditions for the gaugino masses may arise at the unification scale and may affect the observability of the neutral MSSM Higgs bosons (h/H/A) at the LHC. The implications of such non-universal gaugino masses are investigated for Higgs boson production in the SUSY cascade decay chain \(\tilde{g}\rightarrow \tilde{q}q\) , \(\tilde{q}\rightarrow \tilde{\chi_{2}}q\) , \(\tilde{\chi_{2}}\rightarrow \tilde{\chi_{1}}h/H/A\) , \(h/H/A\rightarrow b\bar{b}\) produced in pp interactions. In the singlet representation with universal gaugino masses only the light Higgs boson can be produced in this cascade with the parameter region of interest for us, while with non-universal gaugino masses heavy neutral MSSM Higgs boson production may dominate. The allowed parameter space in the light of the WMAP constraints on the cold dark-matter relic density is investigated in the above scenarios for gaugino mass parameters. We also demonstrate that combination of representations can give the required amount of dark matter in any point of the parameter space. In the non-universal case we show that heavy Higgs bosons can be detected in the cascade studied in parameter regions with the WMAP preferred neutralino relic density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Cremmer, S. Ferrara, L. Girardello, A. Van Proeyen, Coupling supersymmetric Yang–Mills theories to supergravity. Phys. Lett. B 116, 231 (1982)

    Article  ADS  Google Scholar 

  2. J.R. Ellis, K. Enqvist, D.V. Nanopoulos, K. Tamvakis, Gaugino masses and grand unification. Phys. Lett. B 155, 381 (1985)

    Article  ADS  Google Scholar 

  3. M. Drees, Phenomenological consequences of N=1 supergravity theories with nonminimal kinetic energy terms for vector superfields. Phys. Lett. B 158, 409 (1985)

    Article  ADS  Google Scholar 

  4. G. Anderson, C.H. Chen, J.F. Gunion, J.D. Lykken, T. Moroi, Y. Yamada, Motivations for and implications of non-universal GUT-scale boundary conditions for soft SUSY-breaking parameters. (1996). arXiv:hep-ph/9609457

  5. K. Huitu, J. Laamanen, P.N. Pandita, S. Roy, Phenomenology of non-universal gaugino masses in supersymmetric grand unified theories. Phys. Rev. D 72, 055013 (2005)

    Article  ADS  Google Scholar 

  6. G. Anderson, H. Baer, C.-H. Chen, X. Tata, The reach of Fermilab Tevatron upgrades for SU(5) supergravity models with nonuniversal gaugino masses. Phys. Rev. D 61, 095005 (2000)

    Article  ADS  Google Scholar 

  7. K. Huitu, Y. Kawamura, T. Kobayashi, K. Puolamaki, Phenomenological constraints on SUSY SU(5) GUTs with nonuniversal gaugino masses. Phys. Rev. D 61, 035001 (2000)

    Article  ADS  Google Scholar 

  8. G. Belanger, F. Boudjema, A. Cottrant, A. Pukhov, A. Semenov, WMAP constraints on SUGRA models with non-universal gaugino masses and prospects for direct detection. Nucl. Phys. B 706, 411 (2005)

    Article  ADS  Google Scholar 

  9. A. Djouadi, Y. Mambrini, M. Muhlleitner, Chargino and neutralino decays revisited. Eur. Phys. J. C 20, 563 (2001)

    Article  ADS  Google Scholar 

  10. U. Chattopadhyay, D. Choudhury, D. Das, Large evolution of the bilinear Higgs coupling in supersymmetric models and reduction of phase sensitivity. Phys. Rev. D 72, 095015 (2005)

    Article  ADS  Google Scholar 

  11. U. Chattopadhyay, P. Nath, b–tau unification, g(μ)−2, the bs+γ constraint and nonuniversalities. Phys. Rev. D 65, 075009 (2002)

    Article  ADS  Google Scholar 

  12. S. Bhattacharya, A. Datta, B. Mukhopadhyaya, Non-universal gaugino masses: a signal-based analysis for the Large Hadron Collider. J. High Energy Phys. 10, 080 (2007)

    Article  ADS  Google Scholar 

  13. A. Corsetti, P. Nath, Gaugino mass nonuniversality and dark matter in SUGRA, strings and D-brane models. Phys. Rev. D 64, 125010 (2001)

    Article  ADS  Google Scholar 

  14. V. Bertin, N. Emmanuel, J. Orloff, Neutralino dark matter beyond CMSSM universality. J. High Energy Phys. 02, 046 (2003)

    Article  ADS  Google Scholar 

  15. A. Birkedal-Hansen, B.D. Nelson, Relic neutralino densities and detection rates with nonuniversal gaugino masses. Phys. Rev. D 67, 095006 (2003)

    Article  ADS  Google Scholar 

  16. U. Chattopadhyay, D.P. Roy, Higgsino dark matter in a SUGRA model with nonuniversal gaugino masses. Phys. Rev. D 68, 033010 (2003)

    Article  ADS  Google Scholar 

  17. U. Chattopadhyay, A. Corsetti, P. Nath, Supersymmetric dark matter and Yukawa unification. Phys. Rev. D 66, 035003 (2002)

    Article  ADS  Google Scholar 

  18. D.G. Cerdeno, C. Munoz, Neutralino dark matter in supergravity theories with non-universal scalar and gaugino masses. J. High Energy Phys. 10, 015 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  19. S.F. King, J.P. Roberts, D.P. Roy, Natural dark matter in SUSY GUTs with non-universal gaugino masses, 2007

  20. H. Baer, M. Bisset, X. Tata, J. Woodside, Phys. Rev. D 46, 303 (1992)

    Article  ADS  Google Scholar 

  21. A. Datta, A. Djouadi, M. Guchait, F. Moortgat, Detection of MSSM Higgs bosons from supersymmetric particle cascade decays at the LHC. Nucl. Phys. B 681, 31–64 (2004)

    Article  ADS  Google Scholar 

  22. P. Bandyopadhyay, A. Datta, B. Mukhopadhyaya, Signatures of gaugino mass non-universality in cascade Higgs production at the LHC (2008). arXiv:0806.2367

  23. F. Moortgat, P. Olbrechts, L. Pape, Search for a light Higgs boson in SUSY cascades. CMS Note 2006/090, 2006

  24. D.N. Spergel et al., First year Wilkinson microwave anisotropy probe (WMAP) observations: Determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  25. D.N. Spergel et al., Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007)

    Article  ADS  Google Scholar 

  26. B.C. Allanach, SOFTSUSY: A C++ program for calculating supersymmetric spectra. Comput. Phys. Commun. 143, 305–331 (2002)

    Article  MATH  ADS  Google Scholar 

  27. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs: A program for calculating the relic density in the MSSM. Comput. Phys. Commun. 149, 103–120 (2002)

    Article  ADS  Google Scholar 

  28. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs: Version 1.3. Comput. Phys. Commun. 174, 577–604 (2006)

    Article  ADS  Google Scholar 

  29. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs2.0: A program to calculate the relic density of dark matter in a generic model. Comput. Phys. Commun. 176, 367–382 (2007)

    Article  ADS  Google Scholar 

  30. LEP Higgs Working Group for Higgs boson searches, Search for charged Higgs bosons: Preliminary combined results using LEP data collected at energies up to 209-GeV (2001). arXiv:hep-ex/0107031

  31. P. Nath, R. Arnowitt, b to s gamma decay in supergravity grand unification and dark matter. Phys. Lett. B 336, 395–401 (1994)

    Article  ADS  Google Scholar 

  32. P. Nath, R. Arnowitt, Event rates in dark matter detectors for neutralinos including constraints from the b to s gamma decay. Phys. Rev. Lett. 74, 4592–4595 (1995)

    Article  ADS  Google Scholar 

  33. H. Baer, M. Brhlik, D. Castano, X. Tata, bs γ constraints on the minimal supergravity model with large tan(beta). Phys. Rev. D 58, 015007 (1998)

    Article  ADS  Google Scholar 

  34. M. Carena, D. Garcia, U. Nierste, C.E.M. Wagner, bs γ and supersymmetry with large tan(beta). Phys. Lett. B 499, 141–146 (2001)

    Article  ADS  Google Scholar 

  35. G. Degrassi, P. Gambino, G.F. Giudice, b to X/s gamma in supersymmetry: Large contributions beyond the leading order. J. High Energy Phys. 12, 009 (2000)

    Article  ADS  Google Scholar 

  36. E. Barberio et al., Averages of b-hadron properties at the end of 2006 (2007). arXiv:0704.3575

  37. K.L. Chan, U. Chattopadhyay, P. Nath, Naturalness, weak scale supersymmetry and the prospect for the observation of supersymmetry at the Tevatron and at the LHC. Phys. Rev. D 58, 096004 (1998)

    Article  ADS  Google Scholar 

  38. J.L. Feng, K.T. Matchev, T. Moroi, Multi-tev scalars are natural in minimal supergravity. Phys. Rev. Lett. 84, 2322–2325 (2000)

    Article  ADS  Google Scholar 

  39. H. Baer, T. Krupovnickas, S. Profumo, P. Ullio, Model independent approach to focus point supersymmetry: From dark matter to collider searches. J. High Energy Phys. 10, 020 (2005)

    Article  ADS  Google Scholar 

  40. W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas, Squark and gluino production at hadron colliders. Nucl. Phys. B 492, 51–103 (1997)

    ADS  Google Scholar 

  41. M. Muhlleitner, A. Djouadi, Y. Mambrini, SDECAY: A Fortran code for the decays of the supersymmetric particles in the MSSM. Comput. Phys. Commun. 168, 46–70 (2005)

    Article  ADS  Google Scholar 

  42. A. Djouadi, J. Kalinowski, M. Spira, HDECAY: A program for Higgs boson decays in the standard model and its supersymmetric extension. Comput. Phys. Commun. 108, 56–74 (1998)

    Article  MATH  ADS  Google Scholar 

  43. A. Djouadi, J.-L. Kneur, G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM. Comput. Phys. Commun. 176, 426–455 (2007)

    Article  ADS  Google Scholar 

  44. CMS PRS, Search for Higgs bosons in SUSY cascades in CMS and dark matter with non-universal gaugino masses (2008), http://cmsdoc.cern.ch/cms/PRS/results/susybsm/rep24/rep24.html. Accessed 12 August 2008

  45. T. Sjostrand, L. Lonnblad, S. Mrenna, P. Skands, Pythia 6.3 physics and manual. LU TP, 03-38 (2003). arXiv:hep-ph/0308153

  46. H.L. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions. Eur. Phys. J. C 12, 375–392 (2000)

    Article  ADS  Google Scholar 

  47. V. Karimaki, CMSIM, CMS simulation and reconstruction package. Site located at http://cmsdoc.cern.ch/cmsim/cmsim.html

  48. CMS physics technical design report. CERN/LHCC 2006-001, CMS TDR 8.1 (2006)

  49. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, Alpgen, a generator for hard multiparton processes in hard collisions. J. High Energy Phys. 001, 35 (2003)

    Google Scholar 

  50. CMS physics technical design report. CERN/LHCC 2006-002, CMS TDR 8.2 (2006)

  51. CMS OO reconstruction. FAMOS: CMS Reconstruction Package. Site located at http://cmsdoc.cern.ch/famos

  52. CMS OO reconstruction. ORCA: CMS Reconstruction Package. Site located at http://cmsdoc.cern.ch/orca

  53. C. Weiser, A combined secondary vertex based b-tagging algorithm in CMS. CMS Note 2006/014 (2006)

  54. The level-1 trigger. CERN/LHCC 2000-038, CMS TDR 6.1 (2000)

  55. Data acquisition and high-level trigger. CERN/LHCC 2002-26, CMS TDR 6.2 (2002)

  56. L. Pape, F. Moortgat, Hemisphere algorithm for separation of SUSY cascade chains, in Physics Meeting at CERN 10/04/2006, 2006

  57. CMS Particle Flow Group. The CMS particle flow algorithm. To appear as CMS Note (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jari Laamanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huitu, K., Kinnunen, R., Laamanen, J. et al. Search for Higgs bosons in SUSY cascades in CMS and dark matter with non-universal gaugino masses. Eur. Phys. J. C 58, 591–608 (2008). https://doi.org/10.1140/epjc/s10052-008-0786-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0786-0

PACS

Navigation