Skip to main content
Log in

Wave function of the Universe in the early stage of its evolution

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In quantum cosmological models, constructed in the framework of Friedmann–Robertson–Walker metrics, a nucleation of the Universe with its further expansion is described as a tunneling transition through an effective barrier between regions with small and large values of the scale factor a at non-zero (or zero) energy. The approach for describing this tunneling consists of constructing a wave function satisfying an appropriate boundary condition. There are various ways for defining the boundary condition that lead to different estimates of the barrier penetrability and the tunneling time.

In order to describe the escape from the tunneling region as accurately as possible and to construct the total wave function on the basis of its two partial solutions unambiguously, we use the tunneling boundary condition that the total wave function must represent only the outgoing wave at the point of escape from the barrier, where the following definition for the wave is introduced: the wave is represented by the wave function whose modulus changes minimally under a variation of the scale factor a. We construct a new method for a direct non-semiclassical calculation of the total stationary wave function of the Universe, analyze the behavior of this wave function in the tunneling region, near the escape point and in the asymptotic region, and estimate the barrier penetrability. We observe oscillations of the modulus of the wave function in the external region starting from the turning point which decrease with increasing of a and which are not shown in semiclassical calculations. The period of such an oscillation decreases uniformly with increasing a and can be used as a fully quantum dynamical characteristic of the expansion of the Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Vilenkin, Predictions from quantum cosmology, in Proceedings: String Gravity and Physics at the Planck Energy Scale, ed. by N. Sanchez, A. Zichichi, International School of Astrophysics (NATO Advanced Study Institute), Erice, Italy, 8–19 Sep. 1995. NATO ASI Series C, Mathematical and Physical Sciences, vol. 476 (Kluwer Academic, Dordrecht, 1996), pp. 345–367, 544 p., gr-qc/9507018

    Google Scholar 

  2. B.S. DeWitt, Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160(5), 1113–1148 (1967)

    Article  MATH  ADS  Google Scholar 

  3. J.A. Wheeler, Batelle Rencontres (Benjamin, New York, 1968)

    Google Scholar 

  4. A. Vilenkin, Creation of universes from nothing. Phys. Lett. B 117(1–2), 25–28 (1982)

    ADS  MathSciNet  Google Scholar 

  5. J.B. Hartle, S.W. Hawking, Wave function of the Universe. Phys. Rev. D 28(12), 2960–2975 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  6. A.D. Linde, Quantum creation of the inflationary Universe. Lett. Nuovo Cimento 39(2), 401–405 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  7. Ya.B. Zel’dovich, A.A. Starobinsky, Quantum creation of a universe in a nontrivial topology. Sov. Astron. Lett. 10(3), 135 (1984)

    ADS  Google Scholar 

  8. V.A. Rubakov, Quantum mechanics in the tunneling universe. Phys. Lett. B 148(4–5), 280–286 (1984)

    ADS  MathSciNet  Google Scholar 

  9. A. Vilenkin, Quantum creation of universes. Phys. Rev. D 30(2), 509–511 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Vilenkin, Boundary conditions in quantum cosmology. Phys. Rev. D 33(12), 3560–3569 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  11. P.I. Fomin, Dokl. Akad. Nauk Ukr. SSR 9A, 831 (1975)

    Google Scholar 

  12. D. Atkatz, H. Pagels, Origin of the Universe as a quantum tunneling effect. Phys. Rev. D 25(8), 2065–2073 (1982)

    Article  ADS  Google Scholar 

  13. A. Vilenkin, Approaches to quantum cosmology. Phys. Rev. D 50(12), 2581–2594 (1994), gr-qc/9403010

    Article  ADS  MathSciNet  Google Scholar 

  14. V.A. Rubakov, Quantum cosmology, in Proceedings: Structure Formation in the Universe, ed. by R.G. Crittenden, N.G. Turok. (Kluwer Academic, Dordrecht, 1999), pp. 63–74, gr-qc/9910025

    Google Scholar 

  15. J. Ambjorn, J. Jurkiewicz, R. Loll, Semiclassical universe from first principles. Phys. Lett. B 607, 205–213 (2005)

    Article  ADS  Google Scholar 

  16. L.D. Landau, E.M. Lifshitz, Quantum Mechanics, Course of Theoretical Physics, vol. 3 (Nauka, Mockva, 1989), p. 768 (in Russian). Eng. variant: Pergamon, Oxford, UK, 1982

    Google Scholar 

  17. S. Weinberg, Gravitatsiya i Kosmologiya: Printsipi i Prilozheniya Obschei Teorii Otnositel’nosti (Mir, Moskva, 1975), 696 p. (in Russian). Eng. variant: S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, MIT, Wiley, New York–London–Sydney–Toronto, 1972

    Google Scholar 

  18. V.A. Rubakov, Introduction to cosmology (RTN Winter School of Strings, Supergravity and Gauge Theories, January 31–February 4 2005, SISSA, Trieste, Italy), 58 p. Available in pos.sissa.it

  19. A. Linde, Particle Physics and Inflationary Cosmology (Harwood, Chur, 1990), 362 p. Contemp. Concepts Phys. 5, hep-th/0503203

    Google Scholar 

  20. M. Trodden, S.M. Carroll, TASI Lectures: Introduction ot cosmology, in Lectures at the Theoretical Advanced Study Institutes in Elementary Particle Physics, ed. by J.M. Maldacena, TASI-2003, Recent Trends in String Theory, University of Colorado at Boulder, 1–27 Jun. 2003 (World Scientific, Singapore, 2005), p. 82, astro-ph/0401547

    Google Scholar 

  21. R.H. Brandenberger, Inflationary cosmology: progress and problems, in Lectures at the International School on Cosmology, Kish Island, Iran, Jan. 22 – Feb. 4 1999 (Kluwer Academic, Dordrecht, 2000), p. 48, hep-ph/9910410

    Google Scholar 

  22. D. Levkov, C. Rebbi, V.A. Rubakov, Tunneling in quantum cosmology: numerical study of particle creation. Phys. Rev. D 66(8), 083516 (2002), gr-qc/0206028

    Article  ADS  Google Scholar 

  23. J. Acacio de Barros, E.V. Correa Silva, G.A. Monerat, G. Oliveira-Neto, L.G. Ferreira Filho, P. Romildo Jr., Tunneling probability for the birth of an asymptotically de Sitter universe. Phys. Rev. D 75, 104004 (2007), gr-qc/0612031

    Article  ADS  Google Scholar 

  24. V.V. Kuzmichev, Evolution of the quantum Friedmann Universe featuring radiation. Phys. At. Nucl. 62, 708–714 (1999), Yad. Fiz. 62, 758–764 (1999), gr-qc/0002029

    Google Scholar 

  25. V.E. Kuzmichev, V.V. Kuzmichev, Properties of the quantum universe in quasistationary states and cosmological puzzles. Eur. Phys. J. C 23, 337–348 (2002), astro-ph/0111438

    Article  MATH  ADS  Google Scholar 

  26. M. Abramowitza, I.A. Stegan, Spravochnik po Spetsialnim Funktsiyam s Formulami, Grafikami i Matematicheskimi Tablitsami (Nauka, Moskva, 1979), 832 p. (in Russian). Eng. variant: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, ed. by M. Abramowitz, I.A. Stegan, National bureau of standards, Applied Math. Series, vol. 55, 1964

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei P. Maydanyuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maydanyuk, S.P. Wave function of the Universe in the early stage of its evolution. Eur. Phys. J. C 57, 769–784 (2008). https://doi.org/10.1140/epjc/s10052-008-0723-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0723-2

PACS

Navigation