Skip to main content
Log in

Instantons and the infrared behavior of the fermion propagator in the Schwinger model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The fermion propagator of the Schwinger model is revisited from the point of view of its infrared behavior. The values of the anomalous dimensions are found in arbitrary covariant gauge and in all contributing instanton sectors. In the case of a gauge invariant, but path dependent propagator, the exponential dependence, instead of a power law one, is established for the special case when the path is a straight line. The leading behavior is almost identical in any sector, differing only by the slowly varying, algebraic prefactors. The other kind of gauge invariant function, which is the amplitude of the dressed Dirac fermions, may be reduced, by an appropriate choice of the dressing, to the gauge variant one, if the Landau gauge is imposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Schwinger, in: Theoretical Physics, Trieste Lectures 1962 (I.A.E.A., Vienna, 1963), p. 89

  2. J. Schwinger, Phys. Rev. 128, 2425 (1962)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. P.J. Steinhardt, Phys. Rev. D 16, 1782 (1977)

    Article  ADS  Google Scholar 

  4. D. Wolf, J. Zittartz, Z. Phys. B 59, 117 (1985)

    Article  MathSciNet  Google Scholar 

  5. F. Berruto et al., Phys. Rev. D 57, 5070 (1998)

    Article  ADS  Google Scholar 

  6. F. Berruto et al., Ann. Phys. 275, 254 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Y. Hosotani, J. Phys. A 30, L757 (1997)

    Article  MATH  ADS  Google Scholar 

  8. Y. Hosotani, Phys. Rev. B 60, 6198 (1999)

    Article  ADS  Google Scholar 

  9. A.M. Tsvelik, Quantum Field Theory in Condensed Matter Physics (Cambridge University Press, Cambridge, 1996)

    MATH  Google Scholar 

  10. D.G. Barci, L.E. Oxman, S.P. Sorella, J. Phys. A 36, 4927 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. L.S. Brown, Nuovo Cim. 29, 617 (1963)

    Article  Google Scholar 

  12. T. Radożycki, J.M. Namysłowski, Phys. Rev. D 59, 065010 (1999)

    Article  ADS  Google Scholar 

  13. K.G. Wilson, Phys. Rev. D 2, 1473 (1970)

    Article  ADS  Google Scholar 

  14. K.G. Wilson, Phys. Rev. D 2, 1478 (1970)

    Article  ADS  Google Scholar 

  15. W.E. Thirring, Ann. Phys. 3, 91 (1958)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. N.N. Bogoliubov, D.V. Shirkov, Introduction to the Theory of Quantized Fields, 3rd edn. (Interscience Publishers, New York, 1980)

    Google Scholar 

  17. T.-P. Cheng, L.-F. Li, Gauge Theory of Elementary Particle Physics (Clarendon Press, Oxford, 1984)

    Google Scholar 

  18. C. Adam, Z. Phys. C 63, 169 (1994)

    Article  ADS  Google Scholar 

  19. A.V. Smilga, Phys. Rev. D 49, 5480 (1994)

    Article  ADS  Google Scholar 

  20. C. Gattringer, hep-th/9503137

  21. G. Maiella, F. Schaposnik, Nucl. Phys. B 132, 357 (1978)

    Article  ADS  Google Scholar 

  22. K.D. Rothe, J.A. Swieca, Ann. Phys. 117, 382 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  23. G. McCartor, Int. J. Mod. Phys. A 12, 1091 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. R. Rajaraman, An Introduction to Solitons and Instantons in Quantum Field Theory (North-Holland, New York, 1982)

    MATH  Google Scholar 

  25. C.G. Callan, R.F. Dashen, D.J. Gross, Phys. Lett. B 63, 334 (1976)

    Article  ADS  Google Scholar 

  26. T. Radożycki, Phys. Rev. D 60, 105027 (1999)

    Article  ADS  Google Scholar 

  27. T. Radożycki, Phys. Rev. D 75, 085005 (2007)

    Article  ADS  Google Scholar 

  28. J. Schwinger, Phys. Rev. Lett. 3, 296 (1959)

    Article  ADS  Google Scholar 

  29. I. Mitra, R. Ratabola, H.S. Sharatchandra, Phys. Lett. B 636, 68 (2006)

    Article  ADS  Google Scholar 

  30. W. Rantner, X.-G. Wen, Phys. Rev. Lett. 86, 3871 (2001)

    Article  ADS  Google Scholar 

  31. D.V. Khveshchenko, Phys. Rev. B 65, 235111 (2002)

    Article  ADS  Google Scholar 

  32. V.P. Gusynin, D.V. Khveshchenko, M. Reenders, Phys. Rev. B 67, 115201 (2003)

    Article  ADS  Google Scholar 

  33. J. Ye, Phys. Rev. B 67, 115104 (2003)

    Article  ADS  Google Scholar 

  34. P.A.M. Dirac, Can. J. Phys. 33, 650 (1955)

    MATH  MathSciNet  Google Scholar 

  35. M. Lavelle, D. McMullan, Phys. Rep. 279, 1 (1997)

    Article  ADS  Google Scholar 

  36. K. Stam, J. Phys. G: Nucl. Part. Phys. 9, L229 (1983)

    Article  ADS  Google Scholar 

  37. T. Radożycki, Eur. Phys. J. C 6, 549 (1999)

    ADS  Google Scholar 

  38. M. Atiyah, I. Singer, Ann. Math. 87, 484 (1968)

    Article  MathSciNet  Google Scholar 

  39. L.D. Landau, I.M. Khalatnikov, Sov. Phys. JETP 2, 69 (1956)

    MATH  Google Scholar 

  40. B. Zumino, J. Math. Phys. 1, 1 (1960)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. V.A. Fock, Sov. Phys. 12, 404 (1937)

    MATH  Google Scholar 

  42. K. Kanaya, Phys. Rev. D 26, 1758 (1982)

    Article  ADS  Google Scholar 

  43. I. Sachs, A. Wipf, Helv. Phys. Acta 65, 652 (1992)

    MathSciNet  Google Scholar 

  44. J.V. Steele, J.J.M. Verbaarschot, I. Zahed, Phys. Rev. D 51, 5915 (1995)

    Article  ADS  Google Scholar 

  45. R. Roskies, F. Schaposnik, Phys. Rev. D 23, 558 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  46. K. Fujikawa, Phys. Rev. Lett. 42, 1195 (1979)

    Article  ADS  Google Scholar 

  47. K. Fujikawa, Phys. Rev. D 21, 2848 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  48. C. Adam, R.A. Bertlmann, P. Hofer, Riv. Nuovo Cimento 16, 1 (1993)

    MathSciNet  Google Scholar 

  49. N.B. Skachkov, I.L. Solovtsov, O.Y. Shevchenko, Theor. Math. Phys. 71, 376 (1987)

    Article  MathSciNet  Google Scholar 

  50. L. Łukaszuk, E. Leader, A. Johansen, Nucl. Phys. B 562, 291 (1999)

    Article  Google Scholar 

  51. P. Gaete, Z. Phys. C 76, 355 (1997)

    Article  Google Scholar 

  52. P. Gaete, Phys. Rev. D 59, 127702 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Radożycki.

Additional information

PACS

11.10.Kk; 11.15.-q

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radożycki, T. Instantons and the infrared behavior of the fermion propagator in the Schwinger model. Eur. Phys. J. C 55, 509–516 (2008). https://doi.org/10.1140/epjc/s10052-008-0622-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0622-6

Keywords

Navigation