Skip to main content
Log in

The consistent result of cosmological constant from quantum cosmology and inflation with Born–Infeld scalar field

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Quantum cosmology with a Born–Infeld (BI) type scalar field is considered. In the extreme limits of a small cosmological scale factor the wave function of the universe can also be obtained by applying the methods developed by Hartle–Hawking (HH) and Vilenkin. The HH wave function approach predicts that the most probable cosmological constant Λ equals \(\frac{1}{\eta}\) (\(\frac{1}{2\eta}\) equals the maximum of the kinetic energy of the scalar field). It is different from the original results (Λ=0) for the cosmological constant obtained by Hartle–Hawking. The Vilenkin wave function predicts a nucleating universe with the largest possible cosmological constant, and it is larger than 1/η. The conclusions can nicely be reconciled with cosmic inflation. We investigate the inflation model with the BI type scalar field and find that η depends on the amplitude of the tensor perturbation δh, having the form \(\frac{1}{\eta}\) \(\simeq\) \(\frac{m^2}{12\pi[(\frac{9\delta^2_{\Phi}}{N\delta^2_h})^2-1]}.\) The vacuum energy in the inflation epoch depends on the tensor-to-scalar ratio δhΦ. The amplitude of the tensor perturbation δh may, in principle, be large enough to be discovered. However, it is only on the border of detectability in future experiments. If it will have been observed in the future, this will be very interesting as regards determining the vacuum energy in the inflation epoch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. S.W. Hawking, Phys. Lett. B 134, 403 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  3. S. Coleman, Nucl. Phys. B 307, 867 (1988)

    Article  ADS  Google Scholar 

  4. S. Coleman, Harvard University Preprint No. HUTP-88/A022

  5. P.J. Steinhardt, N. Turok, astro-ph/0605173

  6. M.I. Kalinin, V.N. Melnikov, Grav. Cosmol. 9, 227 (2003)

    MATH  MathSciNet  Google Scholar 

  7. S. Capozziello, R. Garattini, Class. Quantum Grav. 24, 1627 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. N.A. Lemos, G.A. Monerat, E.V. Correa Silva, G. Oliveira-Neto, L.G. Ferreira Filho, Phys. Rev. D 73, 044022 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. N.A. Lemos, G.A. Monerat, E.V. Silva, G. Oliveira-Neto, L.G. Fiho, Phys. Rev. D 75, 068504 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  10. M. McGuigan, hep-th/0602112

  11. P.V. Moniz, Class. Quantum Grav. 19, L127 (2002)

    Article  MATH  ADS  Google Scholar 

  12. T. Harko, H.Q. Lu, M.K. Mak, Europhys. Lett. 49, 814 (2000)

    Article  ADS  Google Scholar 

  13. W. Fang, H.Q. Lu, Z.G. Huang, Class. Quantum Grav. 24, 3799 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. W. Fang, H.Q. Lu, Z.G. Huang, Int. J. Mod. Phys. A 22, 2173 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. W. Fang, H.Q. Lu, B. Li, K.F. Zhang, Int. J. Mod. Phys. D 15, 1947 (2006)

    Article  MATH  ADS  Google Scholar 

  16. W. Fang, H.Q. Lu, Z.G. Huang, K.F. Zhang, Int. J. Mod. Phys. D 15, 199 (2006)

    Article  MATH  ADS  Google Scholar 

  17. K.F. Zhang, W. Fang, H.Q. Lu, Int. J. Theor. Phys. 46, 1341 (2006)

    Google Scholar 

  18. H.Q. Lu, Int. J. Mod. Phys. D 14, 355 (2005)

    Article  MATH  ADS  Google Scholar 

  19. H.Q. Lu T. Harko, K.S. Cheng, Int. J. Mod. Phys. D 8, 2625 (1999)

    Article  Google Scholar 

  20. A. Vilenkin, Phys. Rev. D 33, 3560 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Vilenkin, Phys. Rev. D 37, 888 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Vilenkin, Phys. Rev. D 50, 2581 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  23. Y.B. Zeldovich, A.A. Starobinsky, Sov. Astron. Lett. 10, 135 (1984)

    ADS  Google Scholar 

  24. V.A. Rubakov, Phys. Lett. 148B, 280 (1984)

    ADS  MathSciNet  Google Scholar 

  25. A.D. Linde, JETP 60, 211 (1984)

    Google Scholar 

  26. A.D. Linde, Lett. Nuovo Cimento 39, 401 (1984)

    Article  ADS  Google Scholar 

  27. A.D. Linde, Phys. Lett. B 129, 177 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  28. A.D. Linde, Phys. Lett. B 116, 335 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  29. J.B. Hartle, S.W. Hawking, Phys. Rev. D 28, 2960 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  30. S.W. Hawking, Phys. Rev. D 32, 2489 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  31. S.W. Hawking, Nucl. Phys. B 239, 257 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  32. S.W. Hawking, D.N. Page, Nucl. Phys. B 264, 185 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  33. A. Riotto, hep-ph/0210162

  34. V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2005)

    MATH  Google Scholar 

  35. V. Mukhanov, A. Vikman, JCAP 0602, 004 (2006)

    ADS  Google Scholar 

  36. A. Vikman, astro-ph/0606033

  37. A. Linde, Phys. Scripta T 36, 30 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  38. M. Born, L. Infeld, Proc. R. Soc. 144, 425 (1934)

    Article  MATH  ADS  Google Scholar 

  39. W. Heisenberg, Z. Phys. 133, 79 (1952)

    Google Scholar 

  40. W. Heisenberg, Z. Phys. 126, 519 (1949)

    ADS  Google Scholar 

  41. W. Heisenberg, Z. Phys. 113, 61 (1939)

    Article  MATH  ADS  Google Scholar 

  42. J. Polchinski, String Theory (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  43. A. Abouelsaood, C.G. Callan, C.R. Nappi, S.A. Yost, Nucl. Phys. B 280[FS18], 599 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  44. H.P. de Oliveira, J. Math. Phys. 36, 2988 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.Q. Lu.

Additional information

PACS

98.80.Cq, 04.65.+e, 11.25.-w

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, H., Fang, W., Huang, Z. et al. The consistent result of cosmological constant from quantum cosmology and inflation with Born–Infeld scalar field. Eur. Phys. J. C 55, 329–335 (2008). https://doi.org/10.1140/epjc/s10052-008-0564-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0564-z

Keywords

Navigation