Skip to main content
Log in

Investigation of Colour Reconnection in WW events with the DELPHI detector at LEP-2

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In the reaction e+e-→WW→(q12)(q34) the usual hadronization models treat the colour singlets q12 and q34 coming from two W bosons independently. However, since the final state partons may coexist in space and time, cross-talk between the two evolving hadronic systems may be possible during fragmentation through soft gluon exchange. This effect is known as colour reconnection. In this article the results of the investigation of colour reconnection effects in fully hadronic decays of W pairs in DELPHI at LEP are presented. Two complementary analyses were performed, studying the particle flow between jets and W mass estimators, with negligible correlation between them, and the results were combined and compared to models. In the framework of the SK-I model, the value for its κ parameter most compatible with the data was found to be: κSK-I=2.2+2.5 -1.3 corresponding to the probability of reconnection \(\mathcal{P}_{\text{reco}}\) to be in the range \(0.31 <\mathcal{P}_{{\text{reco}}} < 0.68\) at 68% confidence level with its best value at 0.52.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Gustafson, U. Pettersson, P.M. Zerwas, Phys. Lett. B 209, 90 (1988)

    Article  ADS  Google Scholar 

  2. DELPHI Collaboration, J. Abdallah et al., Eur. Phys. J. C 44, 161 (2005)

    Article  ADS  Google Scholar 

  3. V. Khoze, L. Lönnblad, R. Møller, T. Sjöstrand, Š. Todorova, N.K. Watson, in: Physics at LEP-2, Yellow Report CERN 96-01, ed. by G. Altarelli, T. Sjöstrand, F. Zwirner, 1, 191 (1996)

  4. The LEP Collaborations ALEPH, DELPHI, L3, OPAL, and the LEP W Working Group, Combined Preliminary Results on Colour Reconnection using Particle Flow in e+e-→W+W-, note LEPEWWG/FSI/2002-01, ALEPH 2002-027 PHYSIC 2002-016, DELPHI 2002-090 CONF 623, L3 note 2768, and OPAL TN-724, July 17th, 2002, contribution to the summer Conferences of 2002, available at http://delphiwww.cern.ch/pubxx/delnote/public/2002_090_conf_623.ps.gz

  5. T. Sjöstrand, V.A. Khoze, Z. Phys. C 62, 281 (1994)

    Article  ADS  Google Scholar 

  6. G. Marchesini et al., Comput. Phys. Commun. 67, 465 (1992)

    Article  ADS  Google Scholar 

  7. G. Corcella et al., JHEP 0101, 010 (2001)

    Article  ADS  Google Scholar 

  8. L. Lönnblad, Comput. Phys. Commun. 71, 15 (1992)

    Article  ADS  Google Scholar 

  9. H. Kharraziha, L. Lönnblad, Comput. Phys. Commun. 123, 153 (1999)

    Article  MATH  ADS  Google Scholar 

  10. G. Gustafson, J. Häkkinen, Z. Phys. C 64, 659 (1994)

    Article  ADS  Google Scholar 

  11. L. Lönnblad, Z. Phys. C 70, 107 (1996)

    Article  Google Scholar 

  12. DELPHI Collaboration, P. Abreu et al., Phys. Lett. B 416, 233 (1998)

    Article  ADS  Google Scholar 

  13. DELPHI Collaboration, P. Abreu et al., Eur. Phys. J. C 18, 203 (2000) [Eur. Phys. J. C 25, 493 (2002), Erratum]

    ADS  Google Scholar 

  14. D. Duchesneau, New Method Based on Energy and Particle Flow in e+e-→W+W-→ Hadrons Events for Colour Reconnection Studies, LAPP-EXP-2000-02 (http://wwwlapp.in2p3.fr/preplapp/LAPP_EX2000_02.pdf), presented at Workshop on WW Physics at LEP-200 (WW99), Kolymbari, Chania, Greece, 20–23 Oct 1999

  15. J. D’Hondt, N.J. Kjaer, Measurement of Colour Reconnection Model Parameters Using MW Analyses, contributed paper for ICHEP’02 (Amsterdam), note DELPHI 2002-048 CONF 582, available at http://delphiwww.cern.ch/pubxx/delnote/public/2002_048_conf_582.ps.gz

  16. DELPHI Collaboration, P.A. Aarnio et al., Nucl. Instrum. Methods A 303, 233 (1991)

    Article  Google Scholar 

  17. DELPHI Collaboration, P. Abreu et al., Nucl. Instrum. Methods A 378, 57 (1996)

    Article  ADS  Google Scholar 

  18. DELPHI Trigger Group, A. Augustinus et al., Nucl. Instrum. Methods A 515, 782 (2003)

    Article  ADS  Google Scholar 

  19. DELPHI Silicon Tracker Group, P. Chochula et al., Nucl. Instrum. Methods A 412, 304 (1998)

    Article  Google Scholar 

  20. A. Ballestrero, R. Chierici, F. Cossutti, E. Migliore, Comput. Phys. Commun. 152, 175 (2003)

    Article  ADS  Google Scholar 

  21. E. Accomando, A. Ballestrero, Comput. Phys. Commun. 99, 270 (1997)

    Article  ADS  Google Scholar 

  22. E. Accomando, A. Ballestrero, E. Maina, Comput. Phys. Commun. 150, 166 (2003)

    Article  ADS  Google Scholar 

  23. T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994)

    Article  ADS  Google Scholar 

  24. T. Sjöstrand et al., Comput. Phys. Commun. 135, 238 (2001)

    Article  MATH  ADS  Google Scholar 

  25. DELPHI Collaboration, P. Abreu et al., Z. Phys. C 73, 11 (1996)

    Article  Google Scholar 

  26. L. Lönnblad, T. Sjöstrand, Eur. Phys. J. C 2, 165 (1998)

    Article  ADS  Google Scholar 

  27. F.A. Berends, R. Pittau, R. Kleiss, Comput. Phys. Commun. 85, 437 (1995)

    Article  ADS  Google Scholar 

  28. S. Jadach, B.F.L. Ward, Z. Was, Phys. Lett. B 449, 97 (1999)

    Article  ADS  Google Scholar 

  29. S. Jadach, B.F.L. Ward, Z. Was, Comput. Phys. Commun. 130, 260 (2000)

    Article  MATH  ADS  Google Scholar 

  30. S. Jadach et al., Comput. Phys. Commun. 140, 475 (2001)

    Article  MATH  ADS  Google Scholar 

  31. P. Abreu et al., Nucl. Instrum. Methods A 427, 487 (1999)

    Article  ADS  Google Scholar 

  32. S. Catani et al., Phys. Lett. B 269, 432 (1991)

    Article  ADS  Google Scholar 

  33. B. Efron, SIAM Rev. 21, 460 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  34. DELPHI Collaboration, J. Abdallah et al., Eur. Phys. J. C 34, 399 (2004)

    Article  ADS  Google Scholar 

  35. DELPHI Collaboration, P. Abreu et al., Phys. Lett. B 286, 201 (1992)

    Article  ADS  Google Scholar 

  36. DELPHI Collaboration, P. Abreu et al., Z. Phys. C 63, 17 (1994)

    Article  ADS  Google Scholar 

  37. DELPHI Collaboration, P. Abreu et al., Phys. Lett. B 355, 415 (1995)

    Article  ADS  Google Scholar 

  38. DELPHI Collaboration, P. Abreu et al., Phys. Lett. B 471, 460 (2000)

    Article  ADS  Google Scholar 

  39. L3 Collaboration, P. Achard et al., Phys. Lett. B 524, 55 (2002)

    Article  ADS  Google Scholar 

  40. L3 Collaboration, P. Achard et al., Phys. Lett. B 540, 185 (2002)

    Article  ADS  Google Scholar 

  41. OPAL Collaboration, P.D. Acton et al., Phys. Lett. B 267, 143 (1991)

    Article  ADS  Google Scholar 

  42. OPAL Collaboration, P.D. Acton et al., Phys. Lett. B 287, 401 (1992)

    Article  ADS  Google Scholar 

  43. OPAL Collaboration, P.D. Acton et al., Phys. Lett. B 298, 456 (1993)

    Article  ADS  Google Scholar 

  44. OPAL Collaboration, R. Akers et al., Z. Phys. C 67, 389 (1995)

    Article  ADS  Google Scholar 

  45. OPAL Collaboration, G. Alexander et al., Z. Phys. C 72, 389 (1996)

    Article  ADS  Google Scholar 

  46. OPAL Collaboration, K. Ackerstaff et al., Eur. Phys. J. C 5, 239 (1998)

    Article  ADS  Google Scholar 

  47. OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C 11, 239 (1999)

    Article  ADS  Google Scholar 

  48. OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C 16, 423 (2000)

    ADS  Google Scholar 

  49. OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C 21, 23 (2001)

    ADS  Google Scholar 

  50. OPAL Collaboration, G. Abbiendi et al., Phys. Lett. B 523, 35 (2001)

    Article  ADS  Google Scholar 

  51. OPAL Collaboration, G. Abbiendi et al., Phys. Lett. B 559, 131 (2003)

    Article  ADS  Google Scholar 

  52. ALEPH Collaboration, D. Decamp et al., Z. Phys. C 54, 75 (1992)

    Article  ADS  Google Scholar 

  53. ALEPH Collaboration, A. Heister et al., Eur. Phys. J. C 36, 147 (2004)

    Article  ADS  Google Scholar 

  54. ALEPH Collaboration, S. Schael et al., Phys. Lett. B 611, 66 (2005)

    Article  ADS  Google Scholar 

  55. L3 Collaboration, P. Achard et al., Phys. Lett. B 547, 139 (2002)

    Article  Google Scholar 

  56. OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C 36, 297 (2004)

    ADS  Google Scholar 

  57. ALEPH Collaboration, S. Schael et al., Phys. Lett. B 606, 265 (2005)

    Article  ADS  Google Scholar 

  58. DELPHI Collaboration, J. Abdallah et al., Eur. Phys. J. C 34, 127 (2004)

    Article  ADS  Google Scholar 

  59. DELPHI Collaboration, J. Abdallah et al., Eur. Phys. J. C 30, 447 (2003)

    Article  ADS  Google Scholar 

  60. DELPHI Collaboration, P. Abreu et al., Phys. Lett. B 511, 159 (2001)

    Article  ADS  Google Scholar 

  61. The LEP Collaborations ALEPH, DELPHI, L3 and OPAL, and the LEP W Working Group, Combined Preliminary Results on the Mass and Width of the W Boson Measured by the LEP Experiments, note LEPEWWG/MASS/2001-02, ALEPH 2001-044 PHYSIC 2001-017, DELPHI 2001-122 PHYS 899, L3 Note 2695, OPAL TN-697, contribution to EPS 2001, available at http://delphiwww.cern.ch/pubxx/delnote/public/2001_122_phys_899.ps.gz

  62. DELPHI Collaboration, J. Abdallah et al., Measurement of the mass and width of the W boson in e+e- collisions at \(\sqrt{s}\) = 161–209 GeV, paper in preparation

  63. N. Kjaer, M. Mulders, Mixed Lorentz boosted Z0’s, CERN-OPEN-2001-026

  64. L3 Collaboration, P. Achard et al., Phys. Lett. B 561, 202 (2003)

    Article  ADS  Google Scholar 

  65. OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C 45, 291 (2006)

    Article  ADS  Google Scholar 

  66. OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C 45, 307 (2006)

    Article  ADS  Google Scholar 

  67. ALEPH Collaboration, S. Schael et al., Eur. Phys. J. C 47, 309 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J. Timmermans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdallah, J., Abreu, P., Adam, W. et al. Investigation of Colour Reconnection in WW events with the DELPHI detector at LEP-2. Eur. Phys. J. C 51, 249–269 (2007). https://doi.org/10.1140/epjc/s10052-007-0304-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-007-0304-9

Keywords

Navigation