Skip to main content
Log in

Quark–lepton complementarity with lepton and quark mixing data predict θ13 PMNS=(9+1 -2

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The complementarity between the quark and lepton mixing matrices is shown to provide a robust prediction for the neutrino mixing angle θ13 PMNS. We obtain this prediction by first showing that the matrix VM, product of the CKM and PMNS mixing matrices, may have a zero (1,3) entry, which is favored by the experimental data. Hence models with bimaximal or tribimaximal forms of the correlation matrix VM are quite possible. Any theoretical model with a vanishing (1,3) entry of VM, which is in agreement with the quark data, and the solar and the atmospheric mixing angle leads to θ13 PMNS=(9+1 -2)°. This value is consistent with the present 90% CL experimental upper limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968) [Zh. Eksp. Teor. Fiz. 53, 1717 (1967)]

    ADS  Google Scholar 

  2. Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962)

    Article  MATH  ADS  Google Scholar 

  3. G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo, A.M. Rotunno, arXiv:hep-ph/0506307

  4. P. Aliani, V. Antonelli, M. Picariello, E. Torrente-Lujan, arXiv:hep-ph/0309156

  5. CHOOZ Collaboration, M. Apollonio et al., Phys. Lett. B 466, 415 (1999) [arXiv:hep-ex/9907037]

    Article  ADS  Google Scholar 

  6. P. Aliani, V. Antonelli, M. Picariello, E. Torrente-Lujan, Phys. Rev. D 69, 013005 (2004) [arXiv:hep-ph/0212212]

    Article  ADS  Google Scholar 

  7. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963)

    Article  ADS  Google Scholar 

  8. M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973)

    Article  ADS  Google Scholar 

  9. H. Minakata, A.Y. Smirnov, Phys. Rev. D 70, 073009 (2004) [arXiv:hep-ph/0405088]

    Article  ADS  Google Scholar 

  10. J. Ferrandis, S. Pakvasa, Phys. Lett. B 603, 184 (2004) [arXiv:hep-ph/0409204]

    Article  ADS  Google Scholar 

  11. P.H. Frampton, R.N. Mohapatra, JHEP 0501, 025 (2005) [arXiv:hep-ph/0407139]

    Article  ADS  Google Scholar 

  12. S. Antusch, S.F. King, R.N. Mohapatra, Phys. Lett. B 618, 150 (2005) [arXiv:hep-ph/0504007]

    Article  ADS  Google Scholar 

  13. E. Ma, Mod. Phys. Lett. A 20, 1953 (2005) [arXiv:hep-ph/0502024]

    Article  MATH  ADS  Google Scholar 

  14. Z.Z. Xing, Phys. Lett. B 618, 141 (2005) [arXiv:hep-ph/0503200]

    Article  ADS  Google Scholar 

  15. A. Dighe, S. Goswami, P. Roy, Phys. Rev. D 73, 071301 (2006) [arXiv:hep-ph/0602062]

    Article  ADS  Google Scholar 

  16. W. Rodejohann, Phys. Rev. D 69, 033005 (2004) [arXiv:hep-ph/0309249]

    Article  ADS  Google Scholar 

  17. P.H. Frampton, S.T. Petcov, W. Rodejohann, Nucl. Phys. B 687, 31 (2004) [arXiv:hep-ph/0401206]

    Article  MATH  ADS  Google Scholar 

  18. A. Datta, F.S. Ling, P. Ramond, Nucl. Phys. B 671, 383 (2003) [arXiv:hep-ph/0306002]

    Article  ADS  Google Scholar 

  19. A. Datta, L. Everett, P. Ramond, Phys. Lett. B 620, 42 (2005) [arXiv:hep-ph/0503222]

    Article  ADS  Google Scholar 

  20. J. Harada, Europhys. Lett. 75, 248 (2006) [arXiv:hep-ph/0512294]

    Article  ADS  Google Scholar 

  21. M. Raidal, Phys. Rev. Lett. 93, 161801 (2004) [arXiv:hep-ph/0404046]

    Article  ADS  Google Scholar 

  22. H. Georgi, C. Jarlskog, Phys. Lett. B 86, 297 (1979)

    Article  ADS  Google Scholar 

  23. L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983)

    Article  ADS  Google Scholar 

  24. A.J. Buras, M.E. Lautenbacher, G. Ostermaier, Phys. Rev. D 50, 3433 (1994) [arXiv:hep-ph/9403384]

    Article  ADS  Google Scholar 

  25. S.K. Kang, C.S. Kim, J. Lee, Phys. Lett. B 619, 129 (2005) [arXiv:hep-ph/0501029]

    Article  ADS  Google Scholar 

  26. K. Cheung, S.K. Kang, C.S. Kim, J. Lee, Phys. Rev. D 72, 036003 (2005) [arXiv:hep-ph/0503122]

    Article  ADS  Google Scholar 

  27. J.R. Ellis, S. Lola, Phys. Lett. B 458, 310 (1999) [arXiv:hep-ph/9904279]

    Article  ADS  Google Scholar 

  28. S. Antusch, J. Kersten, M. Lindner, M. Ratz, M.A. Schmidt, JHEP 0503, 024 (2005) [arXiv:hep-ph/0501272]

    Article  ADS  Google Scholar 

  29. CKMfitter Group, J. Charles et al., Eur. Phys. J. C 41, 1 (2005) [arXiv:hep-ph/0406184 v3]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Picariello.

Additional information

PACS

14.60.Pq; 14.60.Lm; 96.40.Tv

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauhan, B., Picariello, M., Pulido, J. et al. Quark–lepton complementarity with lepton and quark mixing data predict θ13 PMNS=(9+1 -2)°. Eur. Phys. J. C 50, 573–578 (2007). https://doi.org/10.1140/epjc/s10052-007-0212-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-007-0212-z

Keywords

Navigation