Skip to main content
Log in

Tachyonic cascade spectra of supernova remnants and TeV blazars

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The superluminal spectral densities of relativistic electrons in uniform motion are derived, semiclassically and in second quantization. The effect of electron spin on the tachyonic radiation field, a Proca field with negative mass-square, is studied. There is a longitudinally polarized spectral component due to the negative mass-square of the tachyonic quanta. The radiation densities are averaged with electron distributions, and high- and low-temperature expansions are obtained. Spectral fits to the γ-ray spectra of the Crab Nebula, the supernova remnant RX J1713.7–3946, and the BL Lacertae objects H1426+428, 1ES 1959+650, Mkn 501, and Mkn 421 are performed. In contrast to TeV photons, the extragalactic tachyon flux is not attenuated by interaction with the background light; there is no absorption of tachyonic γ-rays, as tachyons do not interact with infrared photons. The curvature of the TeV spectra in double-logarithmic plots is caused by the Boltzmann factor of the electron densities generating the tachyon flux. The extended spectral plateau in the GeV band, visible in the spectral maps of the two Galactic supernova remnants as well as in the flare spectra of the BL Lacertae objects, is reproduced by the tachyonic radiation densities. Estimates of the electron populations in the supernova remnants and active galactic nuclei are inferred from the spectral fits, such as power-law indices, electron temperatures, and source counts. Upper bounds on the Lorentz factors in the source populations are derived and compared to the breaks in the high-energy cosmic-ray spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Tomaschitz, Eur. Phys. J. B 17, 523 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  2. R. Tomaschitz, Physica A 320, 329 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  3. J.A. Wheeler, R.P. Feynman, Rev. Mod. Phys. 17, 157 (1945)

    Article  ADS  Google Scholar 

  4. R. Tomaschitz, Class. Quantum Grav. 18, 4395 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  5. R. Tomaschitz, Physica A 307, 375 (2002)

    Article  ADS  Google Scholar 

  6. R. Tomaschitz, Eur. Phys. J. C 45, 493 (2006)

    Article  ADS  Google Scholar 

  7. R. Tomaschitz, Eur. Phys. J. D 32, 241 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  8. N.M. Lloyd, V. Petrosian, Astrophys. J. 511, 550 (1999)

    Article  ADS  Google Scholar 

  9. N.M. Lloyd, V. Petrosian, R.S. Mallozzi, Astrophys. J. 534, 227 (2000)

    Article  ADS  Google Scholar 

  10. N.M. Lloyd-Ronning, V. Petrosian, Astrophys. J. 565, 182 (2002)

    Article  ADS  Google Scholar 

  11. V. Petrosian, Astrophys. J. 557, 560 (2001)

    Article  ADS  Google Scholar 

  12. R. Tomaschitz, Ann. Phys. (2007) DOI: 10.1016/j.aop.2006.11.005

  13. R. Tomaschitz, Physica A 335, 577 (2004)

    Article  ADS  Google Scholar 

  14. R. Tomaschitz, Astropart. Phys. 23, 117 (2005)

    Article  ADS  Google Scholar 

  15. R. Tomaschitz, Astropart. Phys. (2007), DOI:10.1016/j.astropartphys.2006.09.003

  16. R. Tomaschitz, Int. J. Theor. Phys. 44, 195 (2005)

    Article  Google Scholar 

  17. O.C. de Jager et al., Astrophys. J. 457, 253 (1996)

    Article  ADS  Google Scholar 

  18. M. Nagano, A.A. Watson, Rev. Mod. Phys. 72, 689 (2000)

    Article  ADS  Google Scholar 

  19. W.-M. Yao et al., J. Phys. G 33, 1 (2006)

    Article  ADS  Google Scholar 

  20. Y. Fukui et al., Publ. Astro. Soc. Japan 55, L61 (2003)

    ADS  MathSciNet  Google Scholar 

  21. Y. Moriguchi et al., Astrophys. J. 631, 947 (2005)

    Article  ADS  Google Scholar 

  22. J.C. Ling, W.A. Wheaton, Astrophys. J. 598, 334 (2003)

    Article  ADS  Google Scholar 

  23. L. Kuiper et al., Astron. Astrophys. 378, 918 (2001)

    Article  ADS  Google Scholar 

  24. R. Much et al., Astron. Astrophys. Suppl. Ser. 120, 703 (1996)

    ADS  Google Scholar 

  25. R.D. van der Meulen et al., Astron. Astrophys. 330, 321 (1998)

    ADS  Google Scholar 

  26. R.C. Hartman et al., Astrophys. J. Suppl. 123, 79 (1999)

    Article  ADS  Google Scholar 

  27. M. de Naurois et al., Astrophys. J. 566, 343 (2002)

    Article  ADS  Google Scholar 

  28. S. Oser et al., Astrophys. J. 547, 949 (2001)

    Article  ADS  Google Scholar 

  29. F. Aharonian et al., Astrophys. J. 614, 897 (2004)

    Article  ADS  Google Scholar 

  30. F. Aharonian et al., Astron. Astrophys. 457, 899 (2006)

    Article  ADS  Google Scholar 

  31. O. Reimer, M. Pohl, Astron. Astrophys. 390, L43 (2002)

    Article  ADS  Google Scholar 

  32. R. Enomoto et al., Nature 416, 823 (2002)

    Article  ADS  Google Scholar 

  33. F.A. Aharonian et al., Nature 432, 75 (2004)

    Article  ADS  Google Scholar 

  34. F.A. Aharonian et al., Astron. Astrophys. 449, 223 (2006)

    Article  ADS  Google Scholar 

  35. A. Djannati-Atai et al., Astron. Astrophys. 391, L25 (2002)

    Article  ADS  Google Scholar 

  36. D. Petry et al., Astron. Astrophys. 580, 104 (2002)

    Google Scholar 

  37. F. Aharonian et al., Astron. Astrophys. 403, 523 (2003)

    Article  ADS  Google Scholar 

  38. M.K. Daniel et al., Astrophys. J. 621, 181 (2005)

    Article  ADS  Google Scholar 

  39. H. Krawczynski et al., Astrophys. J. 601, 151 (2004)

    Article  ADS  Google Scholar 

  40. F.A. Aharonian et al., Astron. Astrophys. 349, 11 (1999)

    ADS  Google Scholar 

  41. F.A. Aharonian et al., Astron. Astrophys. 366, 62 (2001)

    Article  ADS  Google Scholar 

  42. F. Aharonian et al., Astron. Astrophys. 437, 95 (2005)

    Article  ADS  Google Scholar 

  43. K. Okumura et al., Astrophys. J. 579, L9 (2002)

    Article  ADS  Google Scholar 

  44. M. Amenomori et al., Astrophys. J. 598, 242 (2003)

    Article  ADS  Google Scholar 

  45. R. Tomaschitz, J. Phys. A 38, 2201 (2005)

    Article  ADS  Google Scholar 

  46. J.W. den Herder et al., Astron. Astrophys. 365, L7 (2001)

    Article  ADS  Google Scholar 

  47. C.R. Canizares et al., Publ. Astro. Soc. Pac. 117, 1144 (2005)

    Article  ADS  Google Scholar 

  48. F. Frontera et al., Astron. Astrophys. Suppl. Ser. 122, 357 (1997)

    Article  ADS  Google Scholar 

  49. R.E. Rothschild et al., Astrophys. J. 496, 538 (1998)

    Article  ADS  Google Scholar 

  50. K. Makishima et al., Publ. Astro. Soc. Japan 48, 171 (1996)

    ADS  Google Scholar 

  51. G. Manzo et al., Astron. Astrophys. Suppl. Ser. 122, 341 (1997)

    Article  ADS  Google Scholar 

  52. W.N. Johnson et al., Astrophys. J. Suppl. 86, 693 (1993)

    Article  ADS  Google Scholar 

  53. V. Schönfelder et al., Astrophys. J. Suppl. 86, 657 (1993)

    Article  ADS  Google Scholar 

  54. D.J. Thompson et al., Astrophys. J. Suppl. 86, 629 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Tomaschitz.

Additional information

PACS

95.30.Gv; 11.10.Lm; 98.70.Sa; 03.50.Kk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomaschitz, R. Tachyonic cascade spectra of supernova remnants and TeV blazars. Eur. Phys. J. C 49, 815–829 (2007). https://doi.org/10.1140/epjc/s10052-006-0168-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-006-0168-4

Keywords

Navigation