Skip to main content
Log in

Lepton mixing matrix in standard model extended by one sterile neutrino

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We consider the simplest extension of the standard electroweak model by one sterile neutrino that allows for neutrino masses and mixing. We find that its leptonic sector contains much less free physical parameters than previously realized. In addition to the two neutrino masses, the lepton mixing matrix in charged current interactions involves (n-1) free physical mixing angles for n generations. The mixing matrix in neutral current interactions of neutrinos is completely fixed by the two masses. Both interactions conserve CP. We illustrate the phenomenological implications of the model by vacuum neutrino oscillations, tritium β decay and neutrinoless double β decay. It turns out that, due to the revealed specific structure in its mixing matrix, the model with any n generations cannot accommodate simultaneously the data by KamLAND, K2K and CHOOZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. Gonzalez-Garcia, Y. Nir, Rev. Mod. Phys. 75, 345 (2003)

    Article  ADS  Google Scholar 

  2. M. Maltoni, T. Schwetz, M.A. Tortola, J.W.F. Valle, New J. Phys. 6, 122 (2004)

    Article  ADS  Google Scholar 

  3. B. Kayser, F. Gibrat-Debu, F. Perrier, The Physics of Massive Neutrinos (World Scientific, Singapore, 1989)

    Google Scholar 

  4. B. Pontecorvo, Sov. Phys. JETP 6, 429 (1958)

    Google Scholar 

  5. Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962)

    Article  ADS  Google Scholar 

  6. L. Wolfenstein, Phys. Rev. D 17, 2369 (1978)

    Article  ADS  Google Scholar 

  7. S.P. Mikheyev, A.Y. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985)

    Google Scholar 

  8. LSND Collaboration, C. Athanassopoulos et al., Phys. Rev. Lett. 75, 2650 (1995)

    Article  ADS  Google Scholar 

  9. LSND Collaboration, C. Athanassopoulos et al., Phys. Rev. Lett. 77, 3082 (1996)

    Article  ADS  Google Scholar 

  10. LSND Collaboration, C. Athanassopoulos et al., Phys. Rev. Lett. 81, 1774 (1998)

    Article  ADS  Google Scholar 

  11. Bugey Collaboration, B. Achkar et al., Nucl. Phys. B 434, 503 (1995)

    Article  ADS  Google Scholar 

  12. CCFR Collaboration, A. Romosan et al., Phys. Rev. Lett. 78, 2912 (1997)

    Article  ADS  Google Scholar 

  13. KARMEN Collaboration, B. Armbruster et al., Phys. Rev. D 65, 112001 (2002)

    Article  ADS  Google Scholar 

  14. BooNE Collaboration, E.D. Zimmerman et al., hep-ex/0211039

  15. M. Gell-Mann, P. Ramond, R. Slansky, in: Supergravity, ed. by D. Freedman, P. van Nieuwenhuizen (North-Holland, Amsterdam, 1979), p. 315

  16. T. Yanagida, in: Proceedings of the Workshop on Unified Theory and Baryon Number in the Universe, ed. by O. Sawada, A. Sugamoto (KEK, Japan, 1979)

  17. R.N. Mohapatra, G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  18. T.P. Cheng, L.-F. Li, Phys. Rev. D 22, 2860 (1980)

    Article  ADS  Google Scholar 

  19. J.T. Peltoniemi, D. Tommasini, J.W.F. Valle, Phys. Lett. B 298, 383 (1993)

    Article  ADS  Google Scholar 

  20. D.O. Caldwell, R.N. Mohapatra, Phys. Rev. D 48, 3259 (1993)

    Article  ADS  Google Scholar 

  21. Z.G. Berezhiani, R.N. Mohapatra, Phys. Rev. D 52, 6607 (1995)

    Article  ADS  Google Scholar 

  22. R. Foot, R.R. Volkas, Phys. Rev. D 52, 6595 (1995)

    Article  ADS  Google Scholar 

  23. D. Suematsu, Phys. Lett. B 392, 413 (1997)

    Article  ADS  Google Scholar 

  24. M. Maltoni, T. Schwetz, J.W.F. Valle, Phys. Rev. D 65, 093004 (2002); update cited in [2]

    Article  ADS  Google Scholar 

  25. J. Schechter, J.W.F. Valle, Phys. Rev. D 22, 2227 (1980)

    Article  ADS  Google Scholar 

  26. J. Schechter, J.W.F. Valle, Phys. Rev. D 21, 309 (1980)

    Article  ADS  Google Scholar 

  27. J.F. Donoghue, Phys. Rev. D 18, 1632 (1978)

    Article  ADS  Google Scholar 

  28. A. Pilaftsis, Z. Phys. C 55, 275 (1992)

    Article  Google Scholar 

  29. B.A. Kniehl, A. Pilaftsis, Nucl. Phys. B 474, 286 (1996)

    Article  ADS  Google Scholar 

  30. KamLAND Collaboration, K. Eguchi et al., Phys. Rev. Lett. 90, 021802 (2003)

    Article  ADS  Google Scholar 

  31. KamLAND Collaboration, T. Araki et al., hep-ex/0406035

  32. K2K Collaboration, M.H. Ahn et al., Phys. Rev. Lett. 90, 041801 (2003)

    Article  ADS  Google Scholar 

  33. CHOOZ Collaboration, M. Apollonio et al., Phys. Lett. B 420, 397 (1998)

    Article  ADS  Google Scholar 

  34. CHOOZ Collaboration, M. Apollonio et al., Phys. Lett. B 466, 415 (1999)

    Article  ADS  Google Scholar 

  35. B. Kayser, A.S. Goldhaber, Phys. Rev. D 28, 2341 (1983)

    Article  ADS  Google Scholar 

  36. B. Kayser, Phys. Rev. D 30, 1023 (1984)

    Article  ADS  Google Scholar 

  37. S.M. Bilenky, N.P. Nedelcheva, S.T. Petcov, Nucl. Phys. B 247, 61 (1984)

    Article  ADS  Google Scholar 

  38. F. del Aguila, J. Gluza, M. Zralek, Acta Phys. Pol. B 30, 3139 (1999)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Liao.

Additional information

PACS

14.60.Pq; 14.60.St; 23.40.-s

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, Y. Lepton mixing matrix in standard model extended by one sterile neutrino. Eur. Phys. J. C 49, 783–789 (2007). https://doi.org/10.1140/epjc/s10052-006-0130-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-006-0130-5

Keywords

Navigation