Skip to main content
Log in

Is constituent quark scaling a unique sign of parton recombination?

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study the transverse momentum dependence of the anisotropic flow v2 for π, K, nucleon, Λ, Ξ and Ω for Au+Au collisions at \(\sqrt{s_{NN}} = 200\,\mathrm{GeV}\) within two independent string-hadron transport approaches (RQMD and UrQMD). Although both models reach only 60% of the absolute magnitude of the measured v2, they both predict the particle-type dependence of v2 as observed by the RHIC experiments: v2 exhibits a hadron-mass hierarchy in the low pT region and a number-of-constituent-quark (NCQ) dependence in the intermediate pT region. The failure of the hadronic models to reproduce the absolute magnitude of the observed v2 indicates that transport calculations of heavy-ion collisions at RHIC must incorporate interactions among quarks and gluons in the early, hot and dense phase. The presence of an NCQ scaling in the string-hadron model results suggests that the particle-type dependences observed in heavy-ion collisions at intermediate pT might be related to the hadronic cross sections in vacuum rather than to the hadronization process itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Lu et al., J. Phys. G 32, 1121 (2006) [arXiv:nucl-th/0602009]

    Article  ADS  Google Scholar 

  2. See Proceedings of Quark Matter 2005, Budapest, Hungary, 2005

  3. S.A. Bass, M. Gyulassy, H. Stöcker, W. Greiner, J. Phys. G 25, R1 (1999) [arXiv:hep-ph/9810281]

    Article  ADS  Google Scholar 

  4. H. Stöcker, M. Gyulassy, J. Boguta, Phys. Lett. B 103, 269 (1981)

    Article  ADS  Google Scholar 

  5. H. Stöcker, W. Greiner, Phys. Rep. 137, 277 (1986)

    Article  ADS  Google Scholar 

  6. H. Sorge, Phys. Rev. Lett. 78, 2309 (1997)

    Article  ADS  Google Scholar 

  7. J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992)

    Article  ADS  Google Scholar 

  8. W. Reisdorf, H.G. Ritter, Ann. Rev. Nucl. Part. Sci. 47, 663 (1997)

    Article  ADS  Google Scholar 

  9. M. Bleicher, H. Stöcker, Phys. Lett. B 526, 309 (2002) [arXiv:hep-ph/0006147]

    Article  ADS  Google Scholar 

  10. H. Stöcker, Nucl. Phys. A 750, 121 (2005) [arXiv:nucl-th/0406018]

    Article  ADS  Google Scholar 

  11. X. Zhu, M. Bleicher, H. Stöcker, Phys. Rev. C 72, 064911 (2005) [arXiv:nucl-th/0509081]

    Article  ADS  Google Scholar 

  12. X. Zhu, M. Bleicher, H. Stöcker, arXiv:nucl-th/0601049

  13. S. Mrowczynski, E.V. Shuryak, Acta Phys. Pol. B 34, 4241 (2003) [arXiv:nucl-th/0208052]

    ADS  Google Scholar 

  14. N. Xu, Nucl. Phys. A 751, 109 (2005)

    Article  ADS  Google Scholar 

  15. B. Svetitsky, A. Uziel, Phys. Rev. D 55, 2616 (1997) [arXiv:hep-ph/9606284]

    Article  ADS  Google Scholar 

  16. B. Svetitsky, A. Uziel, arXiv:hep-ph/9709228

  17. X. Dong et al., Phys. Lett. B 597, 328 (2004)

    Article  ADS  Google Scholar 

  18. STAR Collaboration, J. Adams et al., Phys. Rev. Lett. 92, 052302 (2004)

    Article  ADS  Google Scholar 

  19. PHENIX Collaboration, S.S. Adler et al., Phys. Rev. Lett. 91, 182301 (2003)

    Article  ADS  Google Scholar 

  20. S. Scherer et al., Prog. Part. Nucl. Phys. 42, 279 (1999)

    Article  ADS  Google Scholar 

  21. S.A. Bass et al., Prog. Part. Nucl. Phys. 42, 313 (1999) [arXiv:nucl-th/9810077]

    Article  Google Scholar 

  22. M. Hofmann, M. Bleicher, S. Scherer, L. Neise, H. Stöcker, W. Greiner, Phys. Lett. B 478, 161 (2000) [arXiv:nucl-th/9908030]

    Article  ADS  Google Scholar 

  23. M. Hofmann, J.M. Eisenberg, S. Scherer, M. Bleicher, L. Neise, H. Stöcker, W. Greiner, arXiv:nucl-th/9908031

  24. S. Scherer, M. Hofmann, M. Bleicher, L. Neise, H. Stöcker, W. Greiner, New J. Phys. 3, 8 (2001) [arXiv:nucl-th/0106036]

    Article  ADS  Google Scholar 

  25. S. Scherer, H. Stöcker, arXiv:nucl-th/0502069

  26. D. Molnar, S. Voloshin, Phys. Rev. Lett. 91, 092301 (2003)

    Article  ADS  Google Scholar 

  27. R.J. Fries, J. Phys. G 31, 379 (2005), nucl-th/0410085 and references therein

    Article  ADS  Google Scholar 

  28. R. Hwa, C.B. Yang, Phys. Rev. C 70, 024904 (2004) and reference therein

    Article  ADS  Google Scholar 

  29. H. Sorge, Phys. Rev. C 52, 3291 (1995)

    Article  ADS  Google Scholar 

  30. M. Bleicher et al., J. Phys. G 25, 1859 (1999) [arXiv:hep-ph/9909407]

    Article  ADS  Google Scholar 

  31. S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998)

    Article  Google Scholar 

  32. M. Bleicher et al., in preparation (2006)

  33. H. van Hecke, H. Sorge, N. Xu, Phys. Rev. Lett. 81, 5764 (1998)

    Article  ADS  Google Scholar 

  34. STAR Collaboration, K.H. Ackermann et al., Phys. Rev. Lett. 86, 402 (2001)

    Article  ADS  Google Scholar 

  35. STAR Collaboration, J. Adams et al., Phys. Rev. C 72, 014904 (2005)

    Article  ADS  Google Scholar 

  36. G. Burau, J. Bleibel, C. Fuchs, A. Faessler, L.V. Bravina, E.E. Zabrodin, Phys. Rev. C 71, 054905 (2005) [arXiv:nucl-th/0411117]

    Article  ADS  Google Scholar 

  37. Z. Xu, C. Greiner, in Proc. Quark Matter 2005, August 4–9, 2005, Budapest [arXiv:hep-ph/0509324]

  38. E.L. Bratkovskaya et al., Phys. Rev. C 69, 054907 (2004) [arXiv:nucl-th/0402026]

    Article  ADS  Google Scholar 

  39. S.A. Bass, C. Hartnack, H. Stoecker, W. Greiner, Phys. Rev. C 50, 2167 (1994)

    Article  ADS  Google Scholar 

  40. C.M. Hung, E.V. Shuryak, Phys. Rev. C 57, 1891 (1998) [arXiv:hep-ph/9709264]

    Article  ADS  Google Scholar 

  41. C. Anderlik et al., Phys. Rev. C 59, 3309 (1999) [arXiv:nucl-th/9806004]

    Article  ADS  Google Scholar 

  42. V.K. Magas et al., Heavy Ion Phys. 9, 193 (1999) [arXiv:nucl-th/9903045]

    Google Scholar 

  43. T. Hirano, M. Gyulassy, nucl-th/0506049

  44. S.A. Bass, A. Dumitru, M. Bleicher, L. Bravina, E. Zabrodin, H. Stöcker, W. Greiner, Phys. Rev. C 60, 021902 (1999) [arXiv:nucl-th/9902062]

    Article  ADS  Google Scholar 

  45. A. Dumitru, S.A. Bass, M. Bleicher, H. Stöcker, W. Greiner, Phys. Lett. B 460, 411 (1999) [arXiv:nucl-th/9901046]

    Article  ADS  Google Scholar 

  46. S.A. Bass, A. Dumitru, Phys. Rev. C 61, 064909 (2000) [arXiv:nucl-th/0001033]

    Article  ADS  Google Scholar 

  47. D. Teaney, J. Lauret, E. Shuryak, nucl-th/0110037

  48. C. Nonaka, S.A. Bass, arXiv:nucl-th/0510038

  49. T. Hirano, Proc. Quark Matter 2005, August 4–9, 2005, Budapest [arXiv:nucl-th/0510005]

  50. P. Huovinen, private communications (2003)

  51. STAR Collaboration, M. Oldenburg et al., Proc. Quark Matter 2005, August 4–9, 2005, Budapest [arXiv:nucl-ex/0510026]

  52. STAR Collaboration, J. Adam et al., Phys. Lett. B 612, 181 (2005)

    Article  ADS  Google Scholar 

  53. T.S. Biro, H.B. Nielsen, J. Knoll, Nucl. Phys. B 245, 449 (1984)

    Article  ADS  Google Scholar 

  54. H.J. Mohring, J. Ranft, C. Merino, C. Pajares, Phys. Rev. D 47, 4142 (1993)

    Article  ADS  Google Scholar 

  55. H. Sorge, Phys. Rev. C 52, 3291 (1995) [arXiv:nucl-th/9509007]

    Article  ADS  Google Scholar 

  56. H. Sorge, M. Berenguer, H. Stöcker, W. Greiner, Proceedings of Hot and Dense Nuclear Matter, 621–633, 1993, Bodrum

  57. N. Xu, Prog. Part. Nucl. Phys. 53, 165 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bleicher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleicher, M., Zhu, X. Is constituent quark scaling a unique sign of parton recombination?. Eur. Phys. J. C 49, 303–308 (2007). https://doi.org/10.1140/epjc/s10052-006-0125-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-006-0125-2

Keywords

Navigation