Skip to main content
Log in

Studying the energy dependence of elliptic and directed flow within a relativistic transport approach

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The energy excitation functions of directed flow (v1) and elliptic flow (v2) from Ebeam=90 A MeV to Ecm=200 A GeV are explored within the UrQMD framework and discussed in the context of the available data. The radial and the elliptic flow of the particles produced in a relativistic heavy-ion collision are intimately connected to the pressure and its gradients in the early stage of the reaction. Therefore, these observables should also be sensitive to changes in the equation of state. To prove this connection, the temporal evolution of the pressure, pressure gradients and elliptic flow are shown. For the flow excitation functions it is found that, in the energy regime below Ebeam≤10 A GeV, the inclusion of nuclear potentials is necessary to describe the data. Above 40 A GeV beam energy, the UrQMD model starts to underestimate the elliptic flow. Around the same energy the slope of the rapidity spectra of the proton directed flow develops negative values. This effect is known as the third flow component (“antiflow”) and cannot be reproduced by the transport model. The difference between the data and the UrQMD model can possibly be explained by assuming a phase transition from hadron gas to quark–gluon plasma around Elab=40 A GeV. This would be consistent with the model calculations, indicating a transition from hadronic matter to “string matter” in this energy range. Thus, we speculate that the missing pressure might be generated by strong interactions in the early pre-hadronic/partonic phase of central Au + Au (Pb + Pb) collisions already at lower SPS energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. See Proceedings of Quark Matter 2005, Budapest, Hungary, 2005

  2. H. Stöcker, J.A. Maruhn, W. Greiner, Z. Phys. A 290, 297 (1979)

    Article  Google Scholar 

  3. J. Hofmann, H. Stöcker, U.W. Heinz, W. Scheid, W. Greiner, Phys. Rev. Lett. 36, 88 (1976)

    Article  ADS  Google Scholar 

  4. H. Stöcker, W. Greiner, Phys. Rep. 137, 277 (1986)

    Article  ADS  Google Scholar 

  5. Z. Fodor, S.D. Katz, JHEP 0203, 014 (2002)

    Article  ADS  Google Scholar 

  6. Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B 568, 73 (2003)

    Article  MATH  ADS  Google Scholar 

  7. L.P. Csernai, D. Rohrich, Phys. Lett. B 458, 454 (1999)

    Article  ADS  Google Scholar 

  8. H. Stöcker, Nucl. Phys. A 750, 121 (2005)

    Article  ADS  Google Scholar 

  9. H. Stöcker, E.L. Bratkovskaya, M. Bleicher, S. Soff, X. Zhu, J. Phys. G 31, S929 (2005)

    Article  ADS  Google Scholar 

  10. M. Bleicher et al., J. Phys. G 25, 1859 (1999)

    Article  ADS  Google Scholar 

  11. S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998)

    Article  Google Scholar 

  12. E895 Collaboration, H. Liu et al., Phys. Rev. Lett. 84, 5488 (2000)

    Article  ADS  Google Scholar 

  13. NA49 Collaboration, C. Alt et al., Phys. Rev. C 68, 034903 (2003)

    Article  ADS  Google Scholar 

  14. Q.F. Li, Z.X. Li, S. Soff, M. Bleicher, H. Stöcker, J. Phys. G 32, 151 (2006)

    Article  ADS  Google Scholar 

  15. Q.F. Li, Z.X. Li, S. Soff, M. Bleicher, H. Stöcker, J. Phys. G 32, 407 (2006)

    Article  ADS  Google Scholar 

  16. J. Brachmann et al., Phys. Rev. C 61, 024909 (2000)

    Article  ADS  Google Scholar 

  17. H. Sorge, Phys. Rev. Lett. 82, 2048 (1999)

    Article  ADS  Google Scholar 

  18. J.Y. Ollitrault, Phys. Rev. D 46, 229 (1992)

    Article  ADS  Google Scholar 

  19. C.M. Hung, E.V. Shuryak, Phys. Rev. Lett. 75, 4003 (1995)

    Article  ADS  Google Scholar 

  20. D.H. Rischke, Nucl. Phys. A 610, 88C (1996) [arXiv:nucl-th/9608024]

  21. H. Sorge, Phys. Rev. Lett. 78, 2309 (1997)

    Article  ADS  Google Scholar 

  22. H. Heiselberg, A.M. Levy, Phys. Rev. C 59, 2716 (1999)

    Article  ADS  Google Scholar 

  23. J. Brachmann, A. Dumitru, H. Stöcker, W. Greiner, Eur. Phys. J. A 8, 549 (2000)

    Article  ADS  Google Scholar 

  24. B. Zhang, M. Gyulassy, C.M. Ko, Phys. Lett. B 455, 45 (1999)

    Article  ADS  Google Scholar 

  25. M. Bleicher, H. Stöcker, Phys. Lett. B 526, 309 (2002)

    Article  ADS  Google Scholar 

  26. E895 Collaboration, C. Pinkenburg et al., prepared for Centennial Celebration and Meeting of the American Physical Society (Combining Annual APS General Meeting and the Joint Meeting of the APS and the AAPT), Atlanta, Georgia, 20–26 March 1999

  27. E895 Collaboration, P. Chung et al., Phys. Rev. C 66, 021901 (2002)

    Article  ADS  Google Scholar 

  28. FOPI Collaboration, A. Andronic et al., Phys. Lett. B 612, 173 (2005)

    Article  ADS  Google Scholar 

  29. CERES/NA45 Collaboration, K. Filimonov et al., arXiv: nucl-ex/0109017

  30. CERES/NA45 Collaboration, J. Slivova, Nucl. Phys. A 715, 615 (2003)

    Article  ADS  Google Scholar 

  31. S.I. Esumi, J. Slivova, J. Milosevic for CERES Collaboration SFIN, year XV, Series A: Conferences, No. A2(2002)

  32. PHENIX Collaboration, S. Esumi, Nucl. Phys. A 715, 599 (2003)

    Article  ADS  Google Scholar 

  33. PHOBOS Collaboration, S. Manly et al., Nucl. Phys. A 715, 611 (2003)

    Article  ADS  Google Scholar 

  34. STAR Collaboration, R.L. Ray, Nucl. Phys. A 715, 45 (2003)

    Article  ADS  Google Scholar 

  35. P. Danielewicz, Nucl. Phys. A 661, 82 (1999)

    Article  ADS  Google Scholar 

  36. P. Danielewicz, R.A. Lacey, P.B. Gossiaux, C. Pinkenburg, P. Chung, J.M. Alexander, R.L. McGrath, Phys. Rev. Lett. 81, 2438 (1998)

    Article  ADS  Google Scholar 

  37. Q.B. Pan, P. Danielewicz, Phys. Rev. Lett. 70, 2062 (1993)

    Article  ADS  Google Scholar 

  38. Q.B. Pan, P. Danielewicz, Phys. Rev. Lett. 70, 3523 (1993)

    Article  ADS  Google Scholar 

  39. H. Petersen, Q. Li, X. Zhu, M. Bleicher, Directed and elliptic flow in heavy-ion collisions at GSI-FAIR and arXiv:hep-ph/0608189

  40. E.L. Bratkovskaya et al., Phys. Rev. C 69, 054907 (2004)

    Article  ADS  Google Scholar 

  41. H. Weber et al., Phys. Lett. B 442, 443 (1998)

    Article  ADS  Google Scholar 

  42. X. Zhu, H. Petersen, M. Bleicher, AIP Conf. Proc. 828, 17 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Petersen.

Additional information

PACS

25.75.-q; 25.75.Ld; 25.75.Dw; 25.75.Gz; 24.10.Lx

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, H., Bleicher, M. Studying the energy dependence of elliptic and directed flow within a relativistic transport approach. Eur. Phys. J. C 49, 91–96 (2007). https://doi.org/10.1140/epjc/s10052-006-0071-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-006-0071-z

Keywords

Navigation