Skip to main content
Log in

Jet tomography in the forward direction at RHIC

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Hadron production at high pT displays a strong suppression pattern in a wide rapidity region in heavy ion collisions at RHIC energies. This finding indicates the presence of strong final state effects for both transversally and longitudinally traveling partons, namely induced energy loss. We have developed a perturbative QCD based model to describe hadron production in pp collisions, which can be combined with the Glauber–Gribov model to describe hadron production in heavy ion collisions. Investigating AuAu and CuCu collisions at energy \(\sqrt{s} = 200\,\mathrm{AGeV}\) at mid-rapidity, we find the opacity of the strongly interacting hot matter to be proportional to the participant nucleon number. Considering forward rapidities, the suppression pattern indicates the formation of a longitudinally contracted dense deconfined zone in central heavy ion collisions. We determine the parameters for the initial geometry from the existing data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PHENIX Collaboration, G. David et al., Nucl. Phys. A 698, 227 (2002)

    Article  ADS  Google Scholar 

  2. PHENIX Collaboration, V. Greene et al., Nucl. Phys. A 774, 93 (2006)

    Article  ADS  Google Scholar 

  3. STAR Collaboration, J. Dunlop et al., Nucl. Phys. A 774, 139 (2006)

    Article  ADS  Google Scholar 

  4. P. Lévai et al., Nucl. Phys. A 698, 631 (2002)

    Article  ADS  Google Scholar 

  5. I. Vitev, M. Gyulassy, Phys. Rev. Lett. 89, 252301 (2002)

    Article  ADS  Google Scholar 

  6. M. Gyulassy, P. Lévai, I. Vitev, Phys. Rev. Lett. 85, 5535 (2000)

    Article  ADS  Google Scholar 

  7. M. Gyulassy, Nucl. Phys. B 571, 197 (2000)

    Article  ADS  Google Scholar 

  8. M. Gyulassy, Nucl. Phys. B 594, 371 (2001)

    Article  MATH  ADS  Google Scholar 

  9. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne, D. Schiff, Nucl. Phys. B 483, 291 (1997)

    Article  ADS  Google Scholar 

  10. R. Baier, Nucl. Phys. B 484, 265 (1997)

    Article  ADS  Google Scholar 

  11. R. Baier, Nucl. Phys. B 531, 403 (1998)

    Article  ADS  Google Scholar 

  12. U.A. Wiedemann, Nucl. Phys. B 582, 409 (2000)

    Article  ADS  Google Scholar 

  13. U.A. Wiedemann, Nucl. Phys. B 588, 303 (2000)

    Article  ADS  Google Scholar 

  14. U.A. Wiedemann, Nucl. Phys. A 690, 731 (2001)

    Article  ADS  Google Scholar 

  15. G.G. Barnaföldi et al., Eur. Phys. J. C 33, 609 (2004)

    Article  Google Scholar 

  16. PHENIX Collaboration, D. d’Enterria et al., Nucl. Phys. A 715, 749 (2003)

    Article  Google Scholar 

  17. PHENIX Collaboration, S.S. Adler et al., Phys. Rev. Lett. 91, 072301 (2003)

    Article  ADS  Google Scholar 

  18. BRAHMS Collaboration, P. Staszel et al., Nucl. Phys. A 774, 77 (2006)

    Article  ADS  Google Scholar 

  19. BRAHMS Collaboration, D. Röhrich et al., Nucl. Phys. A 774, 297 (2006)

    Article  Google Scholar 

  20. BRAHMS Collaboration, I. Arsene et al., Phys. Rev. Lett. 93, 242303 (2004)

    Article  ADS  Google Scholar 

  21. BRAHMS Collaboration, Z. Yin et al., J. Phys. G 30, 983 (2004)

    Article  ADS  Google Scholar 

  22. Z. Yin for the BRAHMS Collaboration, Acta Phys. Hung. A 22, 309 (2005)

    Article  Google Scholar 

  23. G.G. Barnaföldi et al., J. Phys. G 30, 1125 (2004)

    Article  ADS  Google Scholar 

  24. G.G. Barnaföldi et al., Nucl. Phys. A 774, 801 (2006)

    Article  ADS  Google Scholar 

  25. Y. Zhang et al., Phys. Rev. C 65, 034903 (2002)

    Article  ADS  Google Scholar 

  26. P. Lévai et al., nucl-th/0306019

  27. M. Djordevic, M. Gyulassy, S. Wicks, Eur. Phys. J. C 43, 135 (2005)

    Article  ADS  Google Scholar 

  28. A. Adil, M. Gyulassy, W.A. Horowitz, S. Wicks, nucl-th/0606010

  29. F. Aversa, P. Chiappetta, M. Greco, J.P. Guillet, Nucl. Phys. B 327, 105 (1989)

    Article  ADS  Google Scholar 

  30. P. Aurenche, M. Fontannaz, J.P. Guillet, B. Kniehl, E. Pilon, M. Werlen, Eur. Phys. J. C 9, 107 (1999)

    Article  ADS  Google Scholar 

  31. P. Aurenche, M. Fontannaz, J.P. Guillet, B. Kniehl, M. Werlen, Eur. Phys. J. C 13, 347 (2001)

    ADS  Google Scholar 

  32. G. Papp et al., hep-ph/0212249

  33. A.D. Martin et al., Eur. Phys. J. C 23, 73 (2003)

    Article  ADS  Google Scholar 

  34. G.G. Barnaföldi et al., Heavy Ion Phys. 18, 79 (2003)

    Article  Google Scholar 

  35. S.J. Li, X.N. Wang, Phys. Lett. B 527, 85 (2002)

    Article  ADS  Google Scholar 

  36. B.A. Kniehl, G. Kramer, B. Pötter, Nucl. Phys. B 597, 337 (2001)

    Article  ADS  Google Scholar 

  37. B.A. Cole, Nucl. Phys. A 774, 225 (2006)

    Article  ADS  Google Scholar 

  38. H. Büsching for the PHENIX Collaboration, Talk on the Hot Quark’06 Conference. See these Proceedings

  39. C. Klein-Bösing for the PHENIX Collaboration, Proceedings of the 22nd Winter Workshop on Nuclear Dynamics, La Jolla, California, USA, 2006; to appear in Acta Phys. Hung. A (nucl-ex/0606013)

  40. J. Dunlop for the STAR Collaboration, Talk on the Quark Matter’05 Conference, 2005, Budapest, Hungary

  41. V. Greco, C.M. Ko, P. Lévai, Phys. Rev. Lett. 90, 202302 (2003)

    Article  ADS  Google Scholar 

  42. V. Greco, Phys. Rev. C 68, 034904 (2003)

    Article  ADS  Google Scholar 

  43. R.J. Fries, B. Müller, C. Nonaka, S. Bass, Phys. Rev. Lett. 90, 202303 (2003)

    Article  ADS  Google Scholar 

  44. R.J. Fries, Phys. Rev. C 68, 044902 (2003)

    Article  ADS  Google Scholar 

  45. PHENIX Collaboration, S.S. Adler et al., Phys. Rev. Lett. 91, 072301 (2003)

    Article  ADS  Google Scholar 

  46. PHENIX Collaboration, H. Büsching et al., Nucl. Phys. A 774, 103 (2006)

    Article  ADS  Google Scholar 

  47. PHOBOS Collaboration, B. Alver et al., Phys. Rev. Lett. 96, 212301 (2006)

    Article  ADS  Google Scholar 

  48. I. Vitev, hep-ph/0511237, to appear in Acta Phys. Hung. (2006)

  49. K.J. Eskola, H. Honkanen, C.A. Salgado, U.A. Wiedemann, Nucl. Phys. A 747, 511 (2005)

    Article  ADS  Google Scholar 

  50. A. Dainese, C. Loizides, G. Paic, Eur. Phys. J. C 38, 461 (2005)

    Article  ADS  Google Scholar 

  51. V. Pantuev, hep-ph/0506095

  52. S. Peigne, P.-B. Gossiaux, T. Gousset, JHEP 0604, 011 (2006)

    Article  ADS  Google Scholar 

  53. PHENIX Collaboration, S.S. Adler et al., Phys. Rev. Lett. 96, 222301 (2006)

    Article  ADS  Google Scholar 

  54. P. Lévai, G. Fai, G. Papp, Phys. Lett. B 634, 383 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.G. Barnaföldi.

Additional information

PACS

12.38.Mh, 24.85.+p, 25.75.-q

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnaföldi, G., Lévai, P., Papp, G. et al. Jet tomography in the forward direction at RHIC. Eur. Phys. J. C 49, 333–338 (2007). https://doi.org/10.1140/epjc/s10052-006-0069-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-006-0069-6

Keywords

Navigation