Skip to main content
Log in

Dynamic behavior of memristor ML neurons and its application in secure communication

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Improving neurons in a real physiological environment and studying their electrical behavior is crucial for understanding human cognitive brain functions and neural dynamics. Neuronal cells reside in a complex physiological environment, where the electromagnetic fields generated by ion transmembrane movements affect their discharge activity. Therefore, to better simulate the real conditions of biological neurons, this paper incorporated the characteristics of the memristor and constructed a four-dimensional Morris-Lecar (ML) neuron model by adding a magneto-controlled memristor into the three-dimensional ML neuron model. Through the study of time series diagrams, phase plane diagrams, inter-spike interval (ISI) bifurcation diagrams, we explored the effects of the feedback gain coefficient and the relationship coefficient between membrane potential and magnetic flux on the firing behavior of neurons in the model. It was found that variations in these two parameters can lead to complex firing patterns in neurons. We also utilized the maximum Lyapunov exponent and dissipative theory to investigate the chaotic synchronization phenomenon in the memristor-based ML neuron model. Additionally, we explored the impact of noise on neuronal synchronization behavior within the system, finding that an appropriate noise intensity can effectively accelerate the neurons’ attainment of a synchronized state. Finally, applying the chaotic synchronization system to secure Communication, the simulation results and related analysis demonstrate that the system excels in encrypting and decrypting voice signals, offering high levels of security and confidentiality.

Graphical abstract

Simulation results of speech signal encryption and decryption

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A.N. Carvalho, J.A. Langa, J.C. Robinson, Non-autonomous dynamical systems. Discrete Continu. Dyn. Syst.-Ser. B. 20(3), 703–747 (2015)

    Article  MathSciNet  Google Scholar 

  2. D. Premraj, K. Suresh, T. Banerjee, K. Thamilmaran, Bifurcation delay in a network of locally coupled slow-fast systems. Phys. Rev. E 98(2), 022206 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  3. M.P. Jackson, A. Rahman, B. Lafon, G. Kronberg, D. Ling, L.C. Parra, M. Bikson, Animal models of transcranial direct current stimulation: methods and mechanisms. Clin. Neurophysiol. 127(11), 3425–3454 (2016)

    Article  Google Scholar 

  4. Y. Horikawa, Coherence resonance in propagating spikes in the FitzHugh-Nagumo model. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 84(6), 1593–1596 (2001)

    Google Scholar 

  5. R. Yuste, From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16(8), 487–497 (2015)

    Article  Google Scholar 

  6. Z. Zhu, R. Wang, F. Zhu, The energy coding of a structural neural network based on the Hodgkin-Huxley model. Front. Neurosci. 12, 306922 (2018)

    Article  Google Scholar 

  7. Y. Zhang, C. Wang, J. Tang, J. Ma, G. Ren, Phase coupling synchronization of FHN neurons connected by a Josephson junction. Sci. China Technol. Sci. 63(11), 2328–2338 (2020)

    Article  ADS  Google Scholar 

  8. G. Wang, M. Ge, L. Lu, Y. Jia, Y. Zhao, Study on propagation efficiency and fidelity of subthreshold signal in feed-forward hybrid neural network under electromagnetic radiation. Nonlinear Dyn. 103, 2627–2643 (2021)

    Article  Google Scholar 

  9. M.D. McDonnell, N. Iannella, M.S. To, H.C. Tuckwell, J. Jost, B.S. Gutkin, L.M. Ward, A review of methods for identifying stochastic resonance in simulations of single neuron models. Netw. Comput. Neural Syst. 26(2), 35–71 (2015)

    Article  Google Scholar 

  10. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952)

    Article  Google Scholar 

  11. S. Aghababaei, S. Balaraman, K. Rajagopal, F. Parastesh, S. Panahi, S. Jafari, Effects of autapse on the chimera state in a Hindmarsh-Rose neuronal network. Chaos Solit. Fractals 153, 111498 (2021)

    Article  MathSciNet  Google Scholar 

  12. R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 17, 257–278 (1955)

    Article  Google Scholar 

  13. E.M. Izhikevich, Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15(5), 1063–1070 (2004)

    Article  Google Scholar 

  14. C. Morris, H. Lecar, Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Article  ADS  Google Scholar 

  15. Q. Xu, Z. Ju, S. Ding, C. Feng, M. Chen, B. Bao, Electromagnetic induction effects on electrical activity within a memristive Wilson neuron model. Cogn. Neurodyn. 16(5), 1221–1231 (2022)

    Article  Google Scholar 

  16. G. Vivekanandhan, I.I. Hamarash, A.M. Ali Ali, S. He, K. Sun, Firing patterns of Izhikevich neuron model under electric field and its synchronization patterns. Eur. Phys. J. Special Topics. 231(22), 4017–4023 (2022)

    Article  ADS  Google Scholar 

  17. X. Wang, D. Yu, T. Li, Y. Jia, Logistic stochastic resonance in the Hodgkin-Huxley neuronal system under electromagnetic induction. Physica A 630, 129247 (2023)

    Article  MathSciNet  Google Scholar 

  18. C. Wang, G. Sun, F. Yang, J. Ma, Capacitive coupling memristive systems for energy balance. AEU-Int. J. Electron. Commun. 153, 154280 (2022)

    Article  Google Scholar 

  19. Y. Wang, J. Ma, Creation of synaptic connection to memristive neurons under noise. Optik 270, 170011 (2022)

    Article  Google Scholar 

  20. F. Yang, Y. Xu, J. Ma, A memristive neuron and its adaptability to external electric field. Chaos: Interdisciplin. J. Nonlinear Sci. 33(2), 023110 (2023)

    Article  MathSciNet  Google Scholar 

  21. Q. Hong, H. Chen, J. Sun, C. Wang, Memristive circuit implementation of a self-repairing network based on biological astrocytes in robot application. IEEE Trans. Neural Netw. Learn. Syst. 33(5), 2106–2120 (2020)

    Article  Google Scholar 

  22. B. Hou, P. Zhou, G. Ren, J. Ma, Energy flow controls synchronization in a network coupled with memristive synapses. Eur. Phys. J. Plus. 138(3), 1–8 (2023)

    Article  Google Scholar 

  23. Y. Guo, Z. Yao, Y. Xu, J. Ma, Control the stability in chaotic circuit coupled by memristor in different branch circuits. AEU-Int. J. Electron. Commun. 145, 154074 (2022)

    Article  Google Scholar 

  24. M. Lv, C. Wang, G. Ren, J. Ma, X. Song, Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

    Article  Google Scholar 

  25. K. Usha, P.A. Subha, Hindmarsh-Rose neuron model with memristors. Biosystems 178, 1–9 (2019)

    Article  Google Scholar 

  26. M. Lv, J. Ma, Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Article  Google Scholar 

  27. Y. Xu, H. Ying, Y. Jia, J. Ma, T. Hayat, Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7(1), 43452 (2017)

    Article  ADS  Google Scholar 

  28. Y. Wang, J. Ma, Y. Xu, F. Wu, P. Zhou, The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. Int. J. Bifurc. Chaos. 27(02), 1750030 (2017)

    Article  MathSciNet  Google Scholar 

  29. J. Zhang, X. Liao, Synchronization and chaos in coupled memristor-based FitzHugh-Nagumo circuits with memristor synapse. AEU Int. J. Electron. Commun. 75, 82–90 (2017)

    Article  Google Scholar 

  30. Y. Xu, Y. Jia, J. Ma, A. Alsaedi, B. Ahmad, Synchronization between neurons coupled by memristor. Chaos Solit. Fractals 104, 435–442 (2017)

    Article  ADS  Google Scholar 

  31. G. Ren, Y. Xu, C. Wang, Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn. 88, 893–901 (2017)

    Article  Google Scholar 

  32. Y. Zhao, X. Sun, Y. Liu, J. Kurths, Phase synchronization dynamics of coupled neurons with coupling phase in the electromagnetic field. Nonlinear Dyn. 93, 1315–1324 (2018)

    Article  Google Scholar 

  33. L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  34. K.S. Halle, C.W. Wu, M. Itoh, L.O. Chua, Spread spectrum communication through modulation of chaos. Int. J. Bifurc. Chaos. 3(02), 469–477 (1993)

    Article  Google Scholar 

  35. M. Itoh, C.W. Wu, L.O. Chua, Communication systems via chaotic signals from a reconstruction viewpoint. Int. J. Bifurc. Chaos. 7(02), 275–286 (1997)

    Article  MathSciNet  Google Scholar 

  36. L. Kocarev, K.S. Halle, K. Eckert, L.O. Chua, U. Parlitz, Experimental demonstration of secure communications via chaotic synchronization. Int. J. Bifurc. Chaos. 2(03), 709–713 (1992)

    Article  Google Scholar 

  37. V. Baysal, R. Solmaz, J. Ma, Investigation of chaotic resonance in Type-I and Type-II Morris-Lecar neurons. Appl. Math. Comput. 448, 127940 (2023)

    MathSciNet  Google Scholar 

  38. M. Ramasamy, K. Rajagopal, B. Ramakrishnan, A. Karthikeyan, Effect of external excitation on synchronization behavior in a network of neuron models. Physica A 625, 129032 (2023)

    Article  MathSciNet  Google Scholar 

  39. Y. Xie, J.X. Xu, S.J. Hu, A novel dynamical mechanism of neural excitability for integer multiple spiking. Chaos Solit. Fractals 21(1), 177–184 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  40. C. Huang, W. Sun, Z. Zheng, J. Lu, S. Chen, Hopf bifurcation control of the M-L neuron model with type I. Nonlinear Dyn. 87, 755–766 (2017)

    Article  Google Scholar 

  41. E.M. Izhikevich, Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos. 10(06), 1171–1266 (2000)

    Article  MathSciNet  Google Scholar 

  42. K. Tsumoto, H. Kitajima, T. Yoshinaga, K. Aihara, H. Kawakami, Bifurcations in Morris-Lecar neuron model. Neurocomputing 69(4–6), 293–316 (2006)

    Article  Google Scholar 

  43. H. Bao, X. Yu, Q. Xu, H. Wu, B. Bao, Three-dimensional memristive Morris-Lecar model with magnetic induction effects and its FPGA implementation. Cogn. Neurodyn. 17(4), 1079–1092 (2023)

    Article  Google Scholar 

  44. B. Bao, Q. Yang, D. Zhu, Y. Zhang, Q. Xu, M. Chen, Initial-induced coexisting and synchronous firing activities in memristor synapse-coupled Morris-Lecar bi-neuron network. Nonlinear Dyn. 99, 2339–2354 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation Key Project of Gansu Province (Grant No. 23JRRA860), the Natural Science Foundation of Gansu Province (Grant No. 23JRRA913), the Key Research and Development Project of Lanzhou Jiaotong University (ZDYF2304) and the Key Talent Project of Gansu Province.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Kaijun Wu, Zhaoxue Huang and Mingjun Yan. The first draft of the manuscript was written by Zhaoxue Huang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhaoxue Huang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Huang, Z. & Yan, M. Dynamic behavior of memristor ML neurons and its application in secure communication. Eur. Phys. J. B 97, 97 (2024). https://doi.org/10.1140/epjb/s10051-024-00719-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00719-y

Navigation