Skip to main content
Log in

Bifurcation delay in a network of nonlocally coupled slow-fast FitzHugh–Nagumo neurons

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Many slow-fast systems can exhibit delayed bifurcation, which means that the crucial transition occurs after some delay during the transition between the oscillatory and steady states due to the presence of a slowly varying parameter. We specifically analyze the dynamical behavior of bifurcation delay in a network of nonlocally coupled FitzHugh–Nagumo neurons by adjusting the frequency of slowly varying currents. Interestingly, we observe an appearance of chimera-like states despite a tiny parameter mismatch in the frequency of any single node. The observed chimera-like state is evidenced through the mean-phase velocity profile. The robustness of the obtained results is then tested by perturbing multiple neurons in three different ways: constant, linearly increasing, and decreasing frequency of certain nodes. Importantly, we discover that the observed chimera state is resilient to all perturbations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. D. Pieroux, T. Erneux, Phys. Rev. A. 53, 2765 (1996)

    Article  ADS  Google Scholar 

  2. R.J. Field, M. Burger, Oscillations and Traveling Waves in Chemical Systems (Wiley, New York, 1985)

    Google Scholar 

  3. J. Rinzel, S.M. Baer, Biophys. J. 54, 551 (1987)

    Article  Google Scholar 

  4. S.M. Baer, T. Erneux, J. Rinzel, SIAM J. Appl. Math. 49, 55 (1989)

    Article  MathSciNet  Google Scholar 

  5. E. Jakobsson, R. Guttman, The Biophysical Approach to Excitable Systems, edited by W. J. Adelman and D. E. Gold man (Plenum Press, New York,), pp. 197-211 (1981)

  6. P. Ashwin, S. Wieczorek, R. Vitolo, P. Cox, Philos. Trans. R. Soc. A 370, 1166 (1962)

    Article  ADS  Google Scholar 

  7. X. Han, Q. Bi, Solitons & Fractals 169, 113270 (2023)

    Article  Google Scholar 

  8. D. Premraj, K. Suresh, T. Banerjee, K. Thamilmaran, Commun. Nonlinear Sci. Numer. Simul. 37, 212 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  9. D. Premraj, K. Suresh, K. Thamilmaran, Chaos 29, 123127 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Perc, M. Marhl, Chaos Solitons & Fractals 27, 395 (2006)

    Article  ADS  Google Scholar 

  11. Y. Park, Y. Do, J.M. Lopez, Phys. Rev. E 84, 056604 (2011)

    Article  ADS  Google Scholar 

  12. D. Premraj, K. Suresh, J. Palanivel, K. Thamilmaran, Commun. Nonlinear Sci. Numer. Simul. 50, 103 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. R. Mannella, F. Moss, P.V.E. McClintock, Phys. Rev. A 35, 2560 (1987)

    Article  ADS  Google Scholar 

  14. D. Premraj, K. Suresh, K. Thamilmaran, Chaos 29, 123127 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  15. G.C. Sethia, A. Sen, Phys. Rev. Lett. 112, 144101 (2014)

    Article  ADS  Google Scholar 

  16. S. Majhi, B.K. Bera, D. Ghosh, M. Perc, Phys. life Rev. 28, 100 (2019)

    Article  ADS  Google Scholar 

  17. A. Zakharova, Chimera Patterns in Networks (Springer, 2020)

    Book  Google Scholar 

  18. M.J. Panaggio, D.M. Abrams, Nonlinearity 28, R67 (2015)

    Article  ADS  Google Scholar 

  19. S. Kanagaraj, P. Durairaj, A. Karthikeyan, K. Rajagopal, Eur. Phys. J. Plus 137, 1223 (2022)

    Article  Google Scholar 

  20. P. Durairaj, S. Kanagaraj, P.N. Rao, A. Karthikeyan, K. Rajagopal, Eur. Phys. J. Plus 138, 900 (2023)

    Article  Google Scholar 

  21. R. FitzHugh, Biophys. J. 1, 445 (1961)

    Article  ADS  Google Scholar 

  22. A.V. Andreev, N.S. Frolov, A.N. Pisarchik, A.E. Hramov, Phys. Rev. E. 100, 022224 (2019)

    Article  ADS  Google Scholar 

  23. T.A. Glaze, S. Lewis, S. Bahar, Chaos 26, 083119 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. H. Bao, Y. Zhang, W. Liu, B. Bao, Nonlinear Dyn. 100, 937 (2020)

    Article  Google Scholar 

  25. S. Kanagaraj, I. Moroz, P. Durairaj, A. Karthikeyan, K. Rajagopal, Cognit. Neurodyn. 18, 473–484 (2024)

    Article  Google Scholar 

  26. A. Schmidt, T. Kasimatis, J. Hizanidis, A. Provata, P. Hövel, Phys. Rev. E 95, 032224 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. C.H. Tian, X.Y. Zhang, Z.H. Wang, Z.H. Liu, Front. Phys. 12, 1–8 (2017)

    ADS  Google Scholar 

  28. J. Tang, J. Zhang, J. Ma, J. Luo, Sci. China Technol. Sci. 62, 1134 (2019)

    Article  ADS  Google Scholar 

  29. C. Tian, L. Cao, H. Bi, K. Xu, Z. Liu, Nonlinear Dyn. 93, 1695 (2018)

    Article  Google Scholar 

  30. I. Hussain, S. Jafari, D. Ghosh, M. Perc, Nonlinear Dyn. 104, 2711 (2021)

    Article  Google Scholar 

  31. E. Rybalova, V.S. Anishchenko, G.I. Strelkova, A. Zakharova, Chaos 29, 071106 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  32. S. Huang, Z. Li, Z. Cai, C. Yu, J. Zhang, M. Wang, F. Xu, Frequency chimera state induced by time delays in neural networks (2023)

  33. D. Premraj, K. Suresh, T. Banerjee, K. Thamilmaran, Phys. Rev. E. 98, 022206 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. X. Wu, X. Wu, C.Y. Wang, B. Mao, J.A. Lu, J. Lü, Y.C. Zhang, L. Lü, Phys. Rep. 1060, 1–54 (2024)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

M. Rhaima was supported by the Researchers Supporting Project number (RSPD2024R683) King Saud University, Riyadh, Saudi Arabia. SS and PD acknowledges with gratitude that this work was funded by the Centre for Nonlinear Systems, Chennai Institute of Technology (CIT), India, under funding number CIT/CNS/2024/RP-005. PD is partially supported by National Natural Science Foundation of china (NSFC) No. 12375031 and Scientific research start-up project (2024) No. 24BS104.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Premraj Durairaj.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durairaj, P., Shanmugam, S., Durairaj, P. et al. Bifurcation delay in a network of nonlocally coupled slow-fast FitzHugh–Nagumo neurons. Eur. Phys. J. B 97, 62 (2024). https://doi.org/10.1140/epjb/s10051-024-00707-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00707-2

Navigation