Skip to main content
Log in

Persistent anomaly in dynamical quantum phase transition in long-range non-Hermitian p-wave Kitaev chain

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Considering a non-Hermitian version of p-wave Kitaev chain in the presence of additional second nearest neighbour tunnelling, we study dynamical quantum phase transition (DQPT) which accounts for the vanishing Loschmidt amplitude. The locus of the Fisher’s zero traces a continuous path on the complex time plane for the Hermitian case while it becomes discontinuous for non-Hermitian cases. This further leads to the half-unit jumps in the winding number characterizing a dynamical topological aspect of DQPT for non-Hermitian Hamiltonian. Uncovering the interplay between non-Hermiticity and long-range tunnelling, we find these features to be universally present irrespective of the additional second nearest neighbour tunnelling terms as long as non-Hermiticity is preserved.

Graphic abstract

The upper panel depicts the discontinuity in Fisher’s zeros exactly on the imaginary axis. The lower panel demonstrates the half-qunatized jumps in the dynamical winding number corresponding to such discontinuous jump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

The data may be available on request to the corresponding author.

References

  1. M.E. Fisher, Rep. Progress Phys. 30, 615 (1967)

    Article  ADS  Google Scholar 

  2. C.N. Yang, T.D. Lee, Phys. Rev. 87, 404 (1952). https://doi.org/10.1103/PhysRev.87.404

    Article  ADS  MathSciNet  Google Scholar 

  3. T.D. Lee, C.N. Yang, Phys. Rev. 87, 410 (1952). https://doi.org/10.1103/PhysRev.87.410

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Heyl, A. Polkovnikov, S. Kehrein, Phys. Rev. Lett. 110, 135704 (2013). https://doi.org/10.1103/PhysRevLett.110.135704

    Article  ADS  Google Scholar 

  5. C. Karrasch, D. Schuricht, Phys. Rev. B 87, 195104 (2013). https://doi.org/10.1103/PhysRevB.87.195104

    Article  ADS  Google Scholar 

  6. J.N. Kriel, C. Karrasch, S. Kehrein, Phys. Rev. B 90, 125106 (2014). https://doi.org/10.1103/PhysRevB.90.125106

    Article  ADS  Google Scholar 

  7. E. Canovi, P. Werner, M. Eckstein, Phys. Rev. Lett. 113, 265702 (2014). https://doi.org/10.1103/PhysRevLett.113.265702

    Article  ADS  Google Scholar 

  8. M. Heyl, Phys. Rev. Lett. 115, 140602 (2015). https://doi.org/10.1103/PhysRevLett.115.140602

    Article  ADS  Google Scholar 

  9. M. Heyl, Reports Progress Phys. 81, 054001 (2018). https://doi.org/10.1088/1361-6633/aaaf9a

    Article  ADS  MathSciNet  Google Scholar 

  10. U. Bhattacharya, S. Bandyopadhyay, A. Dutta, Phys. Rev. B 96, 180303 (2017). https://doi.org/10.1103/PhysRevB.96.180303

    Article  ADS  Google Scholar 

  11. R. Jafari, H. Johannesson, A. Langari, M.A. Martin-Delgado, Phys. Rev. B 99, 054302 (2019). https://doi.org/10.1103/PhysRevB.99.054302

    Article  ADS  Google Scholar 

  12. P. Uhrich, N. Defenu, R. Jafari, J.C. Halimeh, Phys. Rev. B 101, 245148 (2020). https://doi.org/10.1103/PhysRevB.101.245148

    Article  ADS  Google Scholar 

  13. A. Khatun, S.M. Bhattacharjee, Phys. Rev. Lett. 123, 160603 (2019). https://doi.org/10.1103/PhysRevLett.123.160603

    Article  ADS  MathSciNet  Google Scholar 

  14. K. Cao, H. Guo, and G. Yang, Aperiodic dynamical quantum phase transitions in multi-band bloch hamiltonian and its origin, (2023), http://arxiv.org/abs/2303.15966arXiv:2303.15966 [cond-mat.stat-mech]

  15. J.C. Budich, M. Heyl, Phys. Rev. B 93, 085416 (2016). https://doi.org/10.1103/PhysRevB.93.085416

    Article  ADS  Google Scholar 

  16. S. Sharma, U. Divakaran, A. Polkovnikov, A. Dutta, Phys. Rev. B 93, 144306 (2016). https://doi.org/10.1103/PhysRevB.93.144306

    Article  ADS  Google Scholar 

  17. S. Sharma, S. Suzuki, A. Dutta, Phys. Rev. B 92, 104306 (2015). https://doi.org/10.1103/PhysRevB.92.104306

    Article  ADS  Google Scholar 

  18. U. Divakaran, S. Sharma, A. Dutta, Phys. Rev. E 93, 052133 (2016). https://doi.org/10.1103/PhysRevE.93.052133

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Dutta, A. Dutta, Phys. Rev. B 96, 125113 (2017). https://doi.org/10.1103/PhysRevB.96.125113

    Article  ADS  Google Scholar 

  20. S. Vajna, B. Dóra, Phys. Rev. B 89, 161105 (2014). https://doi.org/10.1103/PhysRevB.89.161105

    Article  ADS  Google Scholar 

  21. M. Schmitt, S. Kehrein, Phys. Rev. B 92, 075114 (2015). https://doi.org/10.1103/PhysRevB.92.075114

    Article  ADS  Google Scholar 

  22. J.C. Halimeh, V. Zauner-Stauber, Phys. Rev. B 96, 134427 (2017). https://doi.org/10.1103/PhysRevB.96.134427

    Article  ADS  Google Scholar 

  23. B. Žunkovič, M. Heyl, M. Knap, A. Silva, Phys. Rev. Lett. 120, 130601 (2018). https://doi.org/10.1103/PhysRevLett.120.130601

    Article  ADS  Google Scholar 

  24. J.C. Halimeh, M. Van Damme, V. Zauner-Stauber, L. Vanderstraeten, Phys. Rev. Res. 2, 033111 (2020). https://doi.org/10.1103/PhysRevResearch.2.033111

    Article  Google Scholar 

  25. T. Hashizume, I.P. McCulloch, J.C. Halimeh, Phys. Rev. Res. 4, 013250 (2022). https://doi.org/10.1103/PhysRevResearch.4.013250

    Article  Google Scholar 

  26. J. Lang, B. Frank, J.C. Halimeh, Phys. Rev. B 97, 174401 (2018). https://doi.org/10.1103/PhysRevB.97.174401

    Article  ADS  Google Scholar 

  27. I. Homrighausen, N.O. Abeling, V. Zauner-Stauber, J.C. Halimeh, Phys. Rev. B 96, 104436 (2017). https://doi.org/10.1103/PhysRevB.96.104436

    Article  ADS  Google Scholar 

  28. L. Rossi and F. Dolcini, arXiv preprint arXiv:2203.13874 (2022)

  29. U. Mishra, R. Jafari, A. Akbari, J. Phys. A 53, 375301 (2020)

    Article  MathSciNet  Google Scholar 

  30. S. Vajna, B. Dóra, Phys. Rev. B 89, 161105 (2014). https://doi.org/10.1103/PhysRevB.89.161105

    Article  ADS  Google Scholar 

  31. T. Palmai, Phys. Rev. B 92, 235433 (2015). https://doi.org/10.1103/PhysRevB.92.235433

    Article  ADS  Google Scholar 

  32. F. Andraschko, J. Sirker, Phys. Rev. B 89, 125120 (2014). https://doi.org/10.1103/PhysRevB.89.125120

    Article  ADS  Google Scholar 

  33. R. Modak, D. Rakshit, Phys. Rev. B 103, 224310 (2021). https://doi.org/10.1103/PhysRevB.103.224310

    Article  ADS  Google Scholar 

  34. M. Abdi, Phys. Rev. B 100, 184310 (2019). https://doi.org/10.1103/PhysRevB.100.184310

    Article  ADS  Google Scholar 

  35. M. Syed, T. Enss, N. Defenu, Phys. Rev. B 103, 064306 (2021). https://doi.org/10.1103/PhysRevB.103.064306

    Article  ADS  Google Scholar 

  36. S. Stumper, M. Thoss, J. Okamoto, Phys. Rev. Res. 4, 013002 (2022). https://doi.org/10.1103/PhysRevResearch.4.013002

    Article  Google Scholar 

  37. S. Zamani, R. Jafari, A. Langari, Phys. Rev. B 102, 144306 (2020). https://doi.org/10.1103/PhysRevB.102.144306

    Article  ADS  Google Scholar 

  38. R. Jafari, A. Akbari, U. Mishra, H. Johannesson, Phys. Rev. B 105, 094311 (2022). https://doi.org/10.1103/PhysRevB.105.094311

    Article  ADS  Google Scholar 

  39. R. Jafari, A. Akbari, Phys. Rev. A 103, 012204 (2021). https://doi.org/10.1103/PhysRevA.103.012204

    Article  ADS  Google Scholar 

  40. R. Jafari, A. Akbari, Phys. Rev. A 103, 012204 (2021). https://doi.org/10.1103/PhysRevA.103.012204

    Article  ADS  Google Scholar 

  41. R. Jafari, H. Johannesson, Phys. Rev. Lett. 118, 015701 (2017). https://doi.org/10.1103/PhysRevLett.118.015701

    Article  ADS  Google Scholar 

  42. L. Zhou, Q. Du, J. Phys. 33, 345403 (2021)

    Google Scholar 

  43. K. Yang, L. Zhou, W. Ma, X. Kong, P. Wang, X. Qin, X. Rong, Y. Wang, F. Shi, J. Gong, J. Du, Phys. Rev. B 100, 085308 (2019). https://doi.org/10.1103/PhysRevB.100.085308

    Article  ADS  Google Scholar 

  44. A. Kosior, A. Syrwid, K. Sacha, Phys. Rev. A 98, 023612 (2018). https://doi.org/10.1103/PhysRevA.98.023612

    Article  ADS  Google Scholar 

  45. A. Kosior, K. Sacha, Phys. Rev. A 97, 053621 (2018). https://doi.org/10.1103/PhysRevA.97.053621

    Article  ADS  Google Scholar 

  46. N. Defenu, T. Enss, J.C. Halimeh, Phys. Rev. B 100, 014434 (2019). https://doi.org/10.1103/PhysRevB.100.014434

    Article  ADS  Google Scholar 

  47. V. Zauner-Stauber, J.C. Halimeh, Phys. Rev. E 96, 062118 (2017). https://doi.org/10.1103/PhysRevE.96.062118

    Article  ADS  Google Scholar 

  48. P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C. Hempel, B.P. Lanyon, M. Heyl, R. Blatt, C.F. Roos, Phys. Rev. Lett. 119, 080501 (2017). https://doi.org/10.1103/PhysRevLett.119.080501

    Article  ADS  Google Scholar 

  49. X. Nie, B.-B. Wei, X. Chen, Z. Zhang, X. Zhao, C. Qiu, Y. Tian, Y. Ji, T. Xin, D. Lu, J. Li, Phys. Rev. Lett. 124, 250601 (2020). https://doi.org/10.1103/PhysRevLett.124.250601

    Article  ADS  Google Scholar 

  50. N. Fläschner, D. Vogel, M. Tarnowski, B. Rem, D.-S. Lühmann, M. Heyl, J. Budich, L. Mathey, K. Sengstock, C. Weitenberg, Nat. Phys. 14, 265 (2018)

    Article  Google Scholar 

  51. E.J. Bergholtz, J.C. Budich, Phys. Rev. Res. 1, 012003 (2019). https://doi.org/10.1103/PhysRevResearch.1.012003

    Article  Google Scholar 

  52. K. Yang, S.C. Morampudi, E.J. Bergholtz, Phys. Rev. Lett. 126, 077201 (2021). https://doi.org/10.1103/PhysRevLett.126.077201

    Article  ADS  Google Scholar 

  53. V. Kozii and L. Fu, arXiv preprint arXiv:1708.05841 (2017)

  54. T. Yoshida, R. Peters, N. Kawakami, Phys. Rev. B 98, 035141 (2018). https://doi.org/10.1103/PhysRevB.98.035141

    Article  ADS  Google Scholar 

  55. H. Shen, B. Zhen, L. Fu, Phys. Rev. Lett. 120, 146402 (2018). https://doi.org/10.1103/PhysRevLett.120.146402

    Article  ADS  MathSciNet  Google Scholar 

  56. W. Gou, T. Chen, D. Xie, T. Xiao, T.-S. Deng, B. Gadway, W. Yi, B. Yan, Phys. Rev. Lett. 124, 070402 (2020). https://doi.org/10.1103/PhysRevLett.124.070402

    Article  ADS  Google Scholar 

  57. J.M. Zeuner, M.C. Rechtsman, Y. Plotnik, Y. Lumer, S. Nolte, M.S. Rudner, M. Segev, A. Szameit, Phys. Rev. Lett. 115, 040402 (2015). https://doi.org/10.1103/PhysRevLett.115.040402

    Article  ADS  Google Scholar 

  58. S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K.G. Makris, M. Segev, M.C. Rechtsman, A. Szameit, Nat. Mater. 16, 433 (2017)

    Article  ADS  Google Scholar 

  59. W. Zhu, X. Fang, D. Li, Y. Sun, Y. Li, Y. Jing, H. Chen, Phys. Rev. Lett. 121, 124501 (2018). https://doi.org/10.1103/PhysRevLett.121.124501

    Article  ADS  Google Scholar 

  60. H. Gao, H. Xue, Q. Wang, Z. Gu, T. Liu, J. Zhu, B. Zhang, Phys. Rev. B 101, 180303 (2020). https://doi.org/10.1103/PhysRevB.101.180303

    Article  ADS  Google Scholar 

  61. E.J. Bergholtz, J.C. Budich, F.K. Kunst, Rev. Mod. Phys. 93, 015005 (2021). https://doi.org/10.1103/RevModPhys.93.015005

    Article  ADS  Google Scholar 

  62. A. Ghatak, T. Das, J. Phys. 31, 263001 (2019)

    Google Scholar 

  63. Y. Ashida, Z. Gong, M. Ueda, Adv. Phys. 69, 249 (2020)

    Article  ADS  Google Scholar 

  64. K. Kawabata, K. Shiozaki, M. Ueda, M. Sato, Phys. Rev. X 9, 041015 (2019). https://doi.org/10.1103/PhysRevX.9.041015

    Article  Google Scholar 

  65. L. Zhou, Q.-H. Wang, H. Wang, J. Gong, Phys. Rev. A 98, 022129 (2018). https://doi.org/10.1103/PhysRevA.98.022129

    Article  ADS  Google Scholar 

  66. L. Zhou, Q. Du, New J. Phys. 23, 063041 (2021). https://doi.org/10.1088/1367-2630/ac0574

    Article  ADS  Google Scholar 

  67. J. Naji, M. Jafari, R. Jafari, A. Akbari, Phys. Rev. A 105, 022220 (2022). https://doi.org/10.1103/PhysRevA.105.022220

    Article  ADS  Google Scholar 

  68. R. Hamazaki, Nat. Commun. 12, 5108 (2021). https://doi.org/10.1038/s41467-021-25355-3

    Article  ADS  Google Scholar 

  69. D. Mondal, T. Nag, Phys. Rev. B 107, 184311 (2023). https://doi.org/10.1103/PhysRevB.107.184311

    Article  ADS  Google Scholar 

  70. D. Mondal, T. Nag, Phys. Rev. B 106, 054308 (2022). https://doi.org/10.1103/PhysRevB.106.054308

    Article  ADS  Google Scholar 

  71. Y. Jing, J.-J. Dong, Y.-Y. Zhang, Z.-X. Hu, Biorthogonal dynamical quantum phase transitions in non-hermitian systems, (2023), http://arxiv.org/abs/2307.02993arXiv:2307.02993 [quant-ph]

  72. W. DeGottardi, D. Sen, S. Vishveshwara, Phys. Rev. Lett. 110, 146404 (2013). https://doi.org/10.1103/PhysRevLett.110.146404

    Article  ADS  Google Scholar 

  73. W. DeGottardi, M. Thakurathi, S. Vishveshwara, D. Sen, Phys. Rev. B 88, 165111 (2013). https://doi.org/10.1103/PhysRevB.88.165111

    Article  ADS  Google Scholar 

  74. A. Rajak, T. Nag, A. Dutta, Phys. Rev. E 90, 042107 (2014). https://doi.org/10.1103/PhysRevE.90.042107

    Article  ADS  Google Scholar 

  75. A.Y. Kitaev, Physics-Uspekhi 44, 131 (2001). https://doi.org/10.1070/1063-7869/44/10s/s29

    Article  ADS  Google Scholar 

  76. Y.B. Shi, Z. Song, Phys. Rev. B 107, 125110 (2023). https://doi.org/10.1103/PhysRevB.107.125110

    Article  ADS  Google Scholar 

  77. J. Gong, Q.-H. Wang, Phys. Rev. A 97, 052126 (2018). https://doi.org/10.1103/PhysRevA.97.052126

    Article  ADS  Google Scholar 

  78. A.K. Ghosh, T. Nag, Phys. Rev. B 106, L140303 (2022). https://doi.org/10.1103/PhysRevB.106.L140303

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to dedicate this work to Prof. Amit Dutta whose untimely demise is a great loss for the community. Being his Ph.D. student, I (TN) always wanted to work with him on non-Hermitian DQPT once I returned to India. Unfortunately, this did not take place due to the unfortunate event. We are thankful to Heiko Rieger and Eduardo Hernandez, former and present Editor-in-Chief of European Physical Journal B (EPJB), for taking the initiative of this Topical Issue on “Quantum phase transitions and open quantum systems: A tribute to Prof. Amit Dutta”, in memory of their one long time Editor. We would like to thank the Guest Editors of this Special Issue of EPJB, Uma Divakaran, Ferenc Igloi, Victor Mukherjee and Krishnendu Sengupta for kind invitation to contribute in it. DM acknowledges SAMKHYA (High-Performance Computing Facility provided by the Institute of Physics, Bhubaneswar) for numerical computations. We thank to Arjit Saha for useful discussions. TN acknowledges the NFSG “NFSG/HYD/2023/H0911” from BITS Pilani.

Funding

No funding was received particularly to support this work.

Author information

Authors and Affiliations

Authors

Contributions

Tanay Nag conceived the idea, analyzed the results and wrote the manuscript. Debashish Mondal did all the numerical calculations, prepared the figures, analyzed the results and partially wrote the manuscript.

Corresponding author

Correspondence to Tanay Nag.

Ethics declarations

Conflict of interest

We declare that this manuscript is free from any Conflict of interest. The authors have no financial or proprietary interests in any material discussed in this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, D., Nag, T. Persistent anomaly in dynamical quantum phase transition in long-range non-Hermitian p-wave Kitaev chain. Eur. Phys. J. B 97, 59 (2024). https://doi.org/10.1140/epjb/s10051-024-00701-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00701-8

Navigation