Skip to main content
Log in

A novel fractal interpolation function algorithm for fractal dimension estimation and coastline geometry reconstruction: a case study of the coastline of Kingdom of Saudi Arabia

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Fractal dimension represents the geometric irregularity of an object with respect to the underlying space and is used for several characterizations. The divider method and the box counting method are two classical methods to compute the fractal dimension of fractals, coastlines, natural objects and other complex systems. In this work, we present a novel, extremely efficient algorithm based on the fractal interpolation function (FIF) method for estimating the fractal dimension of coastlines and for reconstructing the coastline geometry. The algorithm is implemented for the coastline of the Kingdom of Saudi Arabia (KSA) as a case study. For validating the accuracy of the proposed algorithm in estimating the fractal dimension we compare our results with those obtained using the divider and the box-counting method. We also reconstruct the coastline geometry of KSA using our algorithm which generates functions (interpolants) that matches the coastline geometry very accurately. Numerical simulations are obtained using a robust, parallel multi-processing library, an \(R-\)program, Python codes, a dynamic programming algorithm, binary search algorithm and the QGIS software.

Graphical abstract

KSA coastline geometry, methodology and flowchart of the proposed FIF algorithm

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. O.S. Al-Kadi, D. Watson, Texture analysis of aggressive and non-aggressive lung tumor CE CT images. IEEE Trans. Biomed. Eng. 55(7), 1822–30 (2008)

    Google Scholar 

  2. E. Avşar, Contribution of fractal dimension theory into the uniaxial compressive strength prediction of a volcanic welded bimrock. Bull. Eng. Geol. Env. 79(7), 3605–3619 (2020)

    Google Scholar 

  3. M.F. Barnsley, Fractals everywhere (Elsevier Inc., Amsterdam, 1993)

    Google Scholar 

  4. M.F. Barnsley, J. Elton, D. Hardin, P. Massopust, Hidden variable fractal intperpolation functions. SIAM J. Math. Anal. 22(5), 1228–1242 (1989)

    Google Scholar 

  5. M.F. Barnsley, Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1989)

    MathSciNet  Google Scholar 

  6. M.F. Barnsley, A.N. Harrington, Calculus of fractal intperpolation functions. J. Approx. Theo. 57, 14–34 (1989)

    Google Scholar 

  7. P. Burrough, Fractal dimensions of landscapes and other environmental data. Nature 294, 240–242 (1981)

    ADS  Google Scholar 

  8. T. Burns, R. Rajan, Combining complexity measures of EEG data: multiplying measures reveal previously hidden information. F1000Research 4, 137 (2015)

    Google Scholar 

  9. H.E. Caicedo-Ortiz, E. Santiago-Cortes, J. López-Bonilla, H.O. Castañeda, Fractal dimension and turbulence in Giant HII Regions. J. Phys: Conf. Ser. 582(1), 1–5 (2015)

    Google Scholar 

  10. Q. Cheng, Multifractal modeling and lacunarity analysis. Math. Geol. 29(7), 919–932 (1997)

    Google Scholar 

  11. D. Cosandey, The fractal dimension of the coastline as a determinant of western leadership in science and technology, in Fractals in Biology and Medicine: Mathematics and Biosciences in Interaction. ed. by G.A. Losa, D. Merlini, T.F. Nonnenmacher, E.R. Weibel (Birkhäuser, Basel, 2002)

  12. Y. Chen, Fractal dimension evolution and spatial replacement dynamics of urban growth. Chaos Solitons Fractals 45(2), 115–124 (2012)

    ADS  Google Scholar 

  13. Y. Chen, Fractal analytical approach of urban form based on spatial correlation function. Chaos Solitons Fractals 49, 47–60 (2013)

    ADS  MathSciNet  Google Scholar 

  14. Y. Chen, The distance-decay function of geographical gravity model: Power law or exponential law? Chaos Solitons Fractals 77, 174–189 (2015)

    ADS  MathSciNet  Google Scholar 

  15. L. Dalla, V. Drakopoulos, On the parameter identification problem in the plane and the polar fractal interpolation functions. J. Approx. Theory 101, 290–303 (1999)

    MathSciNet  Google Scholar 

  16. G. Datseris, I. Kottlarz, A.P. Braun, U. Parlitz, Estimating fractal dimensions: A comparative review and open source implementations. Chaos 33(10), 102101 (2023)

    ADS  MathSciNet  Google Scholar 

  17. V.P. Dimri, Fractal behavior and detectibility limits of geophysical surveys. Geophysics 63(6), 1943–1946 (1998)

    ADS  Google Scholar 

  18. V. Drakopoulos, D. Matthes, D. Sgourdos, N. Vijender, Parameter Identification of Bivariate Fractal Interpolation Surfaces by Using Convex Hulls, Mathematics, 11 (13), 2850, (2023) https://doi.org/10.3390/math11132850. (Special Issue “Fractal and Computational Geometry”)

  19. B. Dubuc, J. Quiniou, C. Roques-Carmes, C. Tricot, S. Zucker, Evaluating the fractal dimension of profiles. Phys. Rev. A 39(3), 1500–12 (1989)

    ADS  MathSciNet  Google Scholar 

  20. G.A. Edgar, Measure, topology, and fractal geometry (Springer-Verlag, New York, 1990)

    Google Scholar 

  21. A. Eftekhari, Fractal dimension of electrochemical reactions. J. Electrochem. Soc. 151(9), E291-6 (2004)

    Google Scholar 

  22. R.A. El-Nabulsi, Geostrophic flow and wind-driven ocean currents depending on the spatial dimensionality of the medium. Pure Appl. Geophys. 176, 2739–2750 (2019)

    ADS  Google Scholar 

  23. R.A. El-Nabulsi, On nonlocal fractal laminar steady and unsteady flows. Acta Mech. 232, 1413–1424 (2021)

    MathSciNet  Google Scholar 

  24. R.A. El-Nabulsi, W. Anukool, Grad-shafranov equation in fractal dimensions. Fusion Sci. Technol. 78(6), 449–467 (2016)

    ADS  Google Scholar 

  25. R.A. El-Nabulsi, W. Anukool, Modeling of combustion and turbulent jet diffusion flames in fractal dimensions. Continuum Mech. Thermodyn. 34, 1219–1235 (2022)

    ADS  MathSciNet  Google Scholar 

  26. R.A. El-Nabulsi, W. Anukool, Fractal nonlocal thermoelasticity of thin elastic nanobeam with apparent negative thermal conductivity. J. Therm. Stresses 45(4), 303–318 (2022)

    Google Scholar 

  27. R.A. El-Nabulsi, W. Anukool, Fractal dimensions in fluid dynamics and their effects on the Rayleigh problem, the Burger’s Vortex and the Kelvin-Helmholtz instability. Acta Mech. 233, 363–381 (2022)

    MathSciNet  Google Scholar 

  28. R.A. El-Nabulsi, W. Anukool, Ocean-atmosphere dynamics and Rossby waves in fractal anisotropic media. Meteorol. Atmos. Phys. 134, 33 (2022)

    ADS  Google Scholar 

  29. R.A. El-Nabulsi, W. Anukool, Foam drainage equation in fractal dimensions: breaking and instabilities. Eur. Phys. J. E 46, 110 (2023)

    Google Scholar 

  30. R.A. El-Nabulsi, W. Anukool, Spiral waves in fractal dimensions and their elimination in \(\lambda -\omega \) systems with less damaging intervention. Chaos Solitons Fractals 178, 114317 (2024)

    MathSciNet  Google Scholar 

  31. K. Falconer, Fractal geometry: mathematical foundations and applications, 3rd edn. (John Wiley & Sons, Hoboken, 2014)

    Google Scholar 

  32. M. Fernández-Martínez, M.A. Sánchez-Granero, J.E. Trinidad Segovia, Fractal dimension for fractal structures: applications to the domain of words. Appl. Math. Comput. 219(3), 1193–1199 (2012)

    MathSciNet  Google Scholar 

  33. M. Fernández-Martínez, J.L. García Guirao, M.A. Sánchez-Granero, & J.E. Trinidad Segovia, Fractal dimension for fractal structures: with applications to finance, SEMA SIMAI Springer Series. 19, Springer, (2019)

  34. M. Fernández-Martínez, L.G. Juan Guirao, M.A. Sánchez-Granero, Calculating Hausdorff dimension in higher dimensional spaces. Symmetry 11(4), 564 (2019)

    ADS  Google Scholar 

  35. M. Frame, A. Urry, S.H. Strogatz, Fractal worlds: grown, built and imagined (Yale University Press, Yale, 2016)

    Google Scholar 

  36. P. Frankhauser, The fractal approach: A new tool for the spatial analysis of urban agglomerations. Population 10(1), 205–240 (1998)

    Google Scholar 

  37. P. Frankhauser, Comparing the morphology of urban patterns in Europe-a fractal approach, European Cities, Insights on outskirts, Report Cost action 10. Urban Civ Eng 2, 79–105 (2004)

    Google Scholar 

  38. P. Frankhauser, From fractal urban pattern analysis to fractal urban planning concepts, in Computational approaches for urban environments. ed. by M. Helbich, J.J. Arsanjani, M. Leitner (Springer International Publishing, Switzerland, 2015)

    Google Scholar 

  39. GADM Maps and Data. https://gadm.org/maps.html (accessed 01 February 2023), (2023)

  40. G. Gonzato, Practical implementation of the box counting algorithm. Comput Geosci 24(1), 95–100 (1998)

    ADS  Google Scholar 

  41. J. Hayward, J.D. Orford, W.B. Whalley, Three implementations of fractal analysis of particle outlines. Comput. Geosci. 15(2), 199–207 (1989)

    ADS  Google Scholar 

  42. A. Husain, M.N. Nanda, M.S. Chowdary, M. Sajid, Fractals: an eclectic survey. Part-I. Fractal Fract. 6, 89 (2022)

    Google Scholar 

  43. A. Husain, M.N. Nanda, M.S. Chowdary, M. Sajid, Fractals: an eclectic survey. Part-II. Fractal Fract. 6, 89 (2022)

    Google Scholar 

  44. A. Husain, J. Reddy, D. Bisht, M. Sajid, Fractal dimension of coastline of Australia. Sci. Rep. 11, 6304 (2021)

    Google Scholar 

  45. A. Husain, J. Reddy, D. Bisht, M. Sajid, Fractal dimension of India using multi-core parallel processing. Comput. Geosci. 159, 104989 (2022)

    Google Scholar 

  46. F. Jahanmiri, D.C. Parker, An overview of fractal geometry applied to urban planning. Land 11, 475 (2022)

    Google Scholar 

  47. B. Jiang, S.A. Brandt, A fractal perspective on scale in geography. ISPRS Int. J. Geo-Inf. 5, 95 (2016)

    Google Scholar 

  48. M. Khoury, R. Wenger, On the fractal dimension of isosurfaces. IEEE Trans. Visual Comput. Graphics 16(6), 1198–1205 (2010)

    Google Scholar 

  49. G. Landini, P.I. Murray, G.P. Misson, Local connected fractal dimensions and lacunarity analyses of 60 degrees fluorescein angiograms. Investig. Ophthalmol. Vis. Sci. 36(13), 2749–2755 (1995)

    Google Scholar 

  50. J. Li, Q. Du, C. Sun, An improved box-counting method for image fractal dimension estimation. Pattern Recogn. 42(11), 2460–2469 (2009)

    ADS  Google Scholar 

  51. Z. Liu Jing, Lu. Zhang, H. Yue Guang, Fractal dimension in human cerebellum measured by magnetic resonance imaging. Biophys. J. 85(6), 4041–6 (2003)

    ADS  Google Scholar 

  52. J. Ma, D. Liu, Y. Chen, Random fractal characters and length uncertainty of the continental coastline of China. J. Earth Syst. Sci. 125(8), 1615–1621 (2016)

    ADS  Google Scholar 

  53. B.B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156(3775), 636–638 (1967)

    ADS  Google Scholar 

  54. B.B. Mandelbrot, Stochastic models for the earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands. Proc. Nat. Acad. Sci. USA 72(10), 3825–3828 (1975)

    ADS  MathSciNet  Google Scholar 

  55. B.B. Mandelbrot, Fractals: form, chance and dimension (W.H. Freeman & Co., San Francisco, 1977)

    Google Scholar 

  56. B.B. Mandelbrot, Fractal geometry of nature (W.H. Freeman & Co., San Francisco, 1982)

    Google Scholar 

  57. P. Manousopoulos, V. Drakopoulos, T. Theoharis, Curve Fitting by Fractal Interpolation. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science I. Lecture Notes in Computer Science, Vol. 4750, Springer, Berlin, Heidelberg. (2008) https://doi.org/10.1007/978-3-540-79299-4_4

  58. P. Manousopoulos, V. Drakopoulos, T. Theoharis, Parameter identification of 1D fractal interpolation functions using bounding volumes. J. Comput. Appl. Math. 233(4), 1063–1082 (2009)

    ADS  MathSciNet  Google Scholar 

  59. P. Manousopoulos, V. Drakopoulos, T. Theoharis, Parameter identification of 1D recurrent fractal interpolation functions with applications to imaging and signal processing. J. Math. Imag. Vis. 40(2), 162–170 (2011)

    MathSciNet  Google Scholar 

  60. P. Maragos, A. Potamianos, Fractal dimensions of speech sounds: computation and application to automatic speech recognition. J. Acoust. Soc. Am. 105(3), 1925–32 (1999)

    ADS  Google Scholar 

  61. M. Marvasti, W. Strahle, Fractal geometry analysis of turbulent data. Signal Process. 41, 191–201 (1995)

    Google Scholar 

  62. M.S. Mazel, M.H. Hayes, Using iterated function systems to model discrete sequences. IEEE Trans. Signal Process. 40(7), 1724–1734 (1992)

    ADS  Google Scholar 

  63. T.C. Molteno, Fast \(O(N)\) box-counting algorithm for estimating dimensions. Phys. Rev. E 48(5), R3263–R3266 (1993)

    ADS  Google Scholar 

  64. R. Mukundan, Paralllel implementation of the box counting algorithm in Open CL. Fractals 23(3), 1–8 (2015)

    Google Scholar 

  65. QGIS. QGIS, Open Source Geographic Information System, https://www.qgis.org/en/site/ (accessed 01 February 2023), (2023)

  66. L. Richardson, The problem of contiguity: an appendix of statistics of deadly quarrels. Gen. Syst. Yearbook 6, 139–187 (1961)

    Google Scholar 

  67. Ruiz de Miras, J., & Jimènez Ibáñez, J. Methodology to Increase the Computational Speed to Obtain the Fractal Dimension Using GPU Programming, in The Fractal Geometry of the Brain. ed. by A. Di Ieva (Springer Series in Computational Neuroscience, Springer, New York, NY, 2016)

    Google Scholar 

  68. N. Saber, Al Mazrouei. UAE-Saudi Arabia Border Dispute: The Case of the 1974 Treaty of Jeddah, Ph.D. thesis, University of Eexter, (2013)

  69. M. Sajid, A. Husain, J. Reddy, M.T. Alresheedi, S.A. Al Yahya, A. Al-Rajy, Box dimension of the border of Kingdom of Saudi Arabia. Heliyon 9, 4 (2023)

    Google Scholar 

  70. A.A. Suleymanov, A.A. Abbasov, A.J. Ismaylov, Fractal analysis of time series in oil and gas production. Chaos Solitons Fractals 41(5), 2474–2483 (2009)

    ADS  Google Scholar 

  71. D.L. Turcotte, Fractal and chaos in geology and geophysics (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  72. Veusz. Veusz\(-\)a scientific plotting package, https://veusz.github.io/ (accessed 01 February 2023), (2023)

  73. J. Wu, X. Jin, S. Mi, J. Tang, An effective method to compute the box-counting dimension based on the mathematical definition and intervals. Results Eng. 6, 100106 (2020)

    Google Scholar 

  74. H.G. Zhang, W.G. Huang, C.b. Zhou, D.L. Li, Q.M. Xiao, Fractal analysis of the complexity of Nanji Island coastline using IKONOS images, “IEEE International Geoscience and Remote Sensing Symposium”, Toronto, ON, Canada, 6, 3447-3449, (2002) https://doi.org/10.1109/IGARSS.2002.1027211

  75. X. Zhu, Y. Cai, X. Yang, On fractal dimensions of China’s coastlines. Math. Geol. 36(4), 447–461 (2004)

    Google Scholar 

Download references

Funding

The authors received no funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

AH: Conceptualization, analysis and interpretation of results, validation, manuscript writing. SG: Data collection, methodology, computer codes writing, experiments and simulations. MS: Conceptualization, supervision, manuscript writing and editing. JR: Data collection, software, computer codes writing, data plotting and simulations. MA: Supervision, analysis and interpretation of results, manuscript editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Akhlaq Husain.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Husain, A., Gumma, S., Sajid, M. et al. A novel fractal interpolation function algorithm for fractal dimension estimation and coastline geometry reconstruction: a case study of the coastline of Kingdom of Saudi Arabia. Eur. Phys. J. B 97, 51 (2024). https://doi.org/10.1140/epjb/s10051-024-00696-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00696-2

Navigation