Skip to main content
Log in

Deciphering driven phase transitions: a study on the dielectric and electrical properties of Ca2Fe2O5

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This study aims to contribute to the investigation of the electrical and dielectric behavior of the well-known brownmillerites Ca2Fe2O5 compound. The compound was produced using a solid-state reaction process and examined using X-ray powder diffraction and Rietveld refinement to confirm its orthorhombic crystal structure, as well as its cell characteristics. A thorough dielectric and electrical examination was carried out across a wide range of temperature and frequency, from 30 to 400 °C and 10 Hz to 1 MHz. Remarkably, at a relatively temperature of approximately 170 °C, the dielectric measurements revealed a complex behavior, indicative of diffuse phase transition. Similar distinctive changes were also observed in impedance spectroscopy and conductivity studies, suggesting a temperature like phase transition phenomenon. This observation was further substantiated through a differential scanning calorimetry analysis, which identified an endothermic dip at around 170 °C, signifying a structural disturbance at these temperatures. These findings contribute significantly to our comprehensive understanding of the material’s behavior across a wide temperature range, providing valuable insights into the polarization mechanisms, relaxation dynamics, and electrical conduction properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets produced and/or examined in the present study can be obtained from the corresponding author upon a reasonable request.

References

  1. T. Maiti, R. Guo, A.S. Bhalla, Evaluation of experimental resume of BaZr x Ti 1–x O 3 with perspective to ferroelectric relaxor family: an overview. Ferroelectrics 425, 4–26 (2011). https://doi.org/10.1080/00150193.2011.644168

    Article  ADS  Google Scholar 

  2. F. Li, S. Zhang, D. Damjanovic, L. Chen, T.R. Shrout, Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics. Adv. Funct. Mater. 28, 1801504 (2018). https://doi.org/10.1002/adfm.201801504

    Article  Google Scholar 

  3. J. Man Jung, S. Won Choi, Dielectric, pyroelectric and piezoelectric properties of 0.4Pb(Mg1/3Nb2/3)O3–0.3Pb(Mg1/3 Ta2/3)O3–0.3PbTiO3 ceramics modified with Cr2O3. Jpn. J. Appl. Phys. 37, 5261 (1998). https://doi.org/10.1143/JJAP.37.5261

    Article  ADS  Google Scholar 

  4. Z.-Y. Cheng, R.S. Katiyar, X. Yao, A. Guo, Dielectric behavior of lead magnesium niobate relaxors. Phys. Rev. B 55, 8165–8174 (1997). https://doi.org/10.1103/PhysRevB.55.8165

    Article  ADS  Google Scholar 

  5. M.D. Glinchuk, Relaxor ferroelectrics: from cross superparaelectric model to random field theory. Br. Ceram. Trans. 103, 76–82 (2004). https://doi.org/10.1179/096797804225012792

    Article  Google Scholar 

  6. K. Almdal, K. Mortensen, A.J. Ryan, F.S. Bates, Order, disorder, and composition fluctuation effects in low molar mass hydrocarbon−poly(dimethylsiloxane) diblock copolymers. Macromolecules 29, 5940–5947 (1996). https://doi.org/10.1021/ma960437k

    Article  ADS  Google Scholar 

  7. V. Veerapandiyan, F. Benes, T. Gindel, M. Deluca, Strategies to improve the energy storage properties of perovskite lead-free relaxor ferroelectrics: a review. Materials 13, 5742 (2020). https://doi.org/10.3390/ma13245742

    Article  ADS  Google Scholar 

  8. H. Krüger, V. Kahlenberg, V. Petříček, F. Phillipp, W. Wertl, High-temperature structural phase transition in studied by in-situ X-ray diffraction and transmission electron microscopy. J. Solid State Chem. 182, 1515–1523 (2009). https://doi.org/10.1016/j.jssc.2009.03.027

    Article  ADS  Google Scholar 

  9. T. Labii, M. Ceretti, A. Boubertakh, W. Paulus, S. Hamamda, Phase transition of CaFeO2.5 at high temperature, (n.d.).

  10. S. Redfern, High-temperature structural phase transition in the LiCu2O2 multiferroic, J. Exp. Theor. Phys. (2013). https://www.academia.edu/20458778/High_temperature_structural_phase_transition_in_the_LiCu2O2_multiferroic. Accessed 23 Aug 2023.

  11. T. Takeda, Y. Yamaguchi, S. Tomiyoshi, M. Fukase, M. Sugimoto, H. Watanabe, Magnetic structure of Ca2 Fe2 O5. J. Phys. Soc. Jpn. 24, 446–452 (1968). https://doi.org/10.1143/JPSJ.24.446

    Article  ADS  Google Scholar 

  12. S. Geller, R.W. Grant, L.D. Fullmer, Magnetic structures in the Ca2Fe2−xAlxO5 system. J. Phys. Chem. Solids 31, 793–803 (1970). https://doi.org/10.1016/0022-3697(70)90213-1

    Article  ADS  Google Scholar 

  13. I. Belenkaya, A. Matvienko, A. Nemudry, Ferroelasticity of SrCo0.8 Fe0.2 O3–δ perovskite-related oxide with mixed ion–electron conductivity. J. Appl. Crystallogr. 48, 179–188 (2015). https://doi.org/10.1107/S1600576714027770

    Article  ADS  Google Scholar 

  14. R.K. Hona, A. Huq, S. Mulmi, F. Ramezanipour, Transformation of structure, electrical conductivity, and magnetism in AA′Fe2 O6−δ, A = Sr, Ca and A′ = Sr. Inorg. Chem. 56, 9716–9724 (2017). https://doi.org/10.1021/acs.inorgchem.7b01228

    Article  Google Scholar 

  15. J. Zhang, H. Zheng, C.D. Malliakas, J.M. Allred, Y. Ren, Q. Li, T.-H. Han, J.F. Mitchell, Brownmillerite Ca2 Co2 O5: synthesis, stability, and re-entrant single crystal to single crystal structural transitions. Chem. Mater. 26, 7172–7182 (2014). https://doi.org/10.1021/cm503873x

    Article  Google Scholar 

  16. V.V. Kharton, I.P. Marozau, N.P. Vyshatko, A.L. Shaula, A.P. Viskup, E.N. Naumovich, F.M.B. Marques, Oxygen ionic conduction in brownmillerite CaAl0.5Fe0.5O2.5+. Mater. Res. Bull. 38, 773–782 (2003). https://doi.org/10.1016/S0025-5408(03)00069-2

    Article  Google Scholar 

  17. R.K. Hona, F. Ramezanipour, Remarkable oxygen-evolution activity of a perovskite oxide from the Ca2–x Srx Fe2 O6− δ Series. Angew. Chem. Int. Ed. 58, 2060–2063 (2019). https://doi.org/10.1002/anie.201813000

    Article  Google Scholar 

  18. M. Krimi, K. Karoui, J.J. Suñol, A. BenRhaiem, Phase transition, impedance spectroscopy and conduction mechanism of Li0.5 Na1.5WO4 material. Phys. E Low-Dimens. Syst. Nanostruct. 102, 137–145 (2018). https://doi.org/10.1016/j.physe.2018.04.032

    Article  ADS  Google Scholar 

  19. I. Rivera, A. Kumar, N. Ortega, R.S. Katiyar, S. Lushnikov, Divide line between relaxor, diffused ferroelectric, ferroelectric and dielectric. Solid State Commun. 149, 172–176 (2009). https://doi.org/10.1016/j.ssc.2008.10.026

    Article  ADS  Google Scholar 

  20. Z. Wang, X.M. Chen, Evolution from relaxor-like dielectric to ferroelectric in Ba[(Fe0.5Nb0.5)1−xTix]O3 solid solutions. Solid State Commun. 151, 708–711 (2011). https://doi.org/10.1016/j.ssc.2011.02.015

    Article  ADS  Google Scholar 

  21. M. Idrees, M. Nadeem, M.M. Hassan, Investigation of conduction and relaxation phenomena in LaFe0.9 Ni0.1 O3 by impedance spectroscopy. J. Phys. D Appl. Phys. 43, 155401 (2010). https://doi.org/10.1088/0022-3727/43/15/155401

    Article  ADS  Google Scholar 

  22. N.N. Kolpakova, R. Margraf, M. Polomska, Dielectric relaxation phenomena in Cd2 Nb2 O7 ferroelectric-ferroelastics. J. Phys. Condens. Matter 6, 2787–2798 (1994). https://doi.org/10.1088/0953-8984/6/14/016

    Article  ADS  Google Scholar 

  23. G.C. Psarras, S. Siengchin, P.K. Karahaliou, S.N. Georga, C.A. Krontiras, J. Karger-Kocsis, Dielectric relaxation phenomena and dynamics in polyoxymethylene/polyurethane/alumina hybrid nanocomposites: polyoxymethylene/polyurethane/alumina nanocomposites. Polym. Int. 60, 1715–1721 (2011). https://doi.org/10.1002/pi.3136

    Article  Google Scholar 

  24. W. Li, Z. Liu, F. Zhang, Q. Sun, Y. Liu, Y. Li, Colossal permittivity of (Li, Nb) co-doped TiO2 ceramics. Ceram. Int. 45, 11920–11926 (2019). https://doi.org/10.1016/j.ceramint.2019.03.080

    Article  Google Scholar 

  25. S. Bonardd, V. Moreno-Serna, G. Kortaberria, D. Díaz Díaz, A. Leiva, C. Saldías, Dipolar glass polymers containing polarizable groups as dielectric materials for energy storage applications. A minireview. Polymers 11, 317 (2019). https://doi.org/10.3390/polym11020317

    Article  Google Scholar 

  26. C. Ang, Z. Yu, dc electric-field dependence of the dielectric constant in polar dielectrics: multipolarization mechanism model. Phys. Rev. B 69, 174109 (2004). https://doi.org/10.1103/PhysRevB.69.174109

    Article  ADS  Google Scholar 

  27. C. Elissalde, J. Ravez, Ferroelectric ceramics: defects and dielectric relaxations. J. Mater. Chem. 11, 1957–1967 (2001). https://doi.org/10.1039/b010117f

    Article  Google Scholar 

  28. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys. 68, 2916–2921 (1990). https://doi.org/10.1063/1.346425

    Article  ADS  Google Scholar 

  29. G. Pagot, M. Garaga, A.L. Jadhav, L.F. O’Donnell, K. Vezzù, B. Itin, R.J. Messinger, S.G. Greenbaum, V. Di Noto, Interplay between coordination, dynamics, and conductivity mechanism in Mg/Al-catenated ionic liquid electrolytes. J. Power. Sources 524, 231084 (2022). https://doi.org/10.1016/j.jpowsour.2022.231084

    Article  Google Scholar 

  30. A.K. Dubey, P. Singh, S. Singh, D. Kumar, O. Parkash, Charge compensation, electrical and dielectric behavior of lanthanum doped CaCu3Ti4O12. J. Alloy. Compd. 509, 3899–3906 (2011). https://doi.org/10.1016/j.jallcom.2010.12.156

    Article  Google Scholar 

  31. H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Z. Pei, Phase structure, dielectric properties, and relaxor behavior of (K0.5Na0.5)NbO3–(Ba0.5Sr0.5)TiO3 lead-free solid solution for high temperature applications. J. Appl. Phys. 105, 124104 (2009). https://doi.org/10.1063/1.3153128

    Article  ADS  Google Scholar 

  32. K. Datta, P.A. Thomas, K. Roleder, Anomalous phase transitions of lead-free piezoelectric x Na0.5 Bi0.5 TiO3 − (1–x ) BaTiO3 solid solutions with enhanced phase transition temperatures. Phys. Rev. B 82, 224105 (2010). https://doi.org/10.1103/PhysRevB.82.224105

    Article  ADS  Google Scholar 

  33. C.-S. Hong, S.-Y. Chu, C.-C. Tsai, C.-C. Hsu, H.-H. Su, Effects of lanthanum dopants on the Curie-Weiss and the local order behaviors for Pb1−xLax(Fe2/3W1/3)0.7Ti0.3O3 relaxor ferroelectrics. Mater. Res. Bull. 48, 200–206 (2013). https://doi.org/10.1016/j.materresbull.2012.09.053

    Article  Google Scholar 

  34. W. Wang, X.-G. Tang, Y.-P. Jiang, Q.-X. Liu, W.-H. Li, X.-B. Guo, Z.-H. Tang, Modified relaxor ferroelectrics in BiFeO3-(Ba, Sr)TiO3-BiScO3 ceramics for energy storage applications. Sustain. Mater. Technol. 32, e00428 (2022). https://doi.org/10.1016/j.susmat.2022.e00428

    Article  Google Scholar 

  35. J.T.S. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2, 132–138 (1990). https://doi.org/10.1002/adma.19900020304

    Article  Google Scholar 

  36. I. Shivaraja, S. Matteppanavar, S.K. Deshpande, S. Rayaprol, B. Angadi, Investigation of space charge polarization behavior in Pb0.9Bi0.1Fe0.7W0.3O3 ceramic. J. Alloys Compd. 800, 334–342 (2019). https://doi.org/10.1016/j.jallcom.2019.06.010

    Article  Google Scholar 

  37. Space Charge Segregation at Grain Boundaries in Titanium Dioxide: II, Model Experiments—Ikeda—1993—Journal of the American Ceramic Society—Wiley Online Library, (n.d.). https://doi.org/10.1111/j.1151-2916.1993.tb03965.x. Accessed 23 Apr 2023.

  38. E.F. Skelton, A.W. Webb, High-pressure research, in Encyclopedia of physical science and technology. (Elsevier, Oxford, 2003), pp.345–363. https://doi.org/10.1016/B0-12-227410-5/00315-X

    Chapter  Google Scholar 

  39. W. Xiao-Juan, G. Zhi-Qiang, Q. Ya-Feng, Z. Jun, C. Xiao-Bing, Oxygen-vacancy-related dielectric relaxation and conduction mechanisms in Bi5TiNbWO15 ceramics. Chin. Phys. 16, 2131 (2007). https://doi.org/10.1088/1009-1963/16/7/056

    Article  Google Scholar 

  40. M. Wimmer, M. Kaes, C. Dellen, M. Salinga, Role of activation energy in resistance drift of amorphous phase change materials. Front. Phys. (2014). https://doi.org/10.3389/fphy.2014.00075

    Article  Google Scholar 

  41. The formation of equilibrium space-charge zones at grain boundaries in the perovskite oxide SrTiO3—Physical Chemistry Chemical Physics (RSC Publishing), (n.d.). https://pubs.rsc.org/en/content/articlelanding/2009/cp/b904100a/unauth. Accessed 23 Apr 2023.

  42. Summerfield scaling model and electrical conductivity study for understanding transport mechanisms of a Cr3+ substituted ZnAl2O4 ceramic. RSC Adv. (RSC Publishing) https://doi.org/10.1039/D2RA07701A, (n.d.). https://pubs.rsc.org/en/content/articlehtml/2023/ra/d2ra07701a. Accessed 29 July 2023.

  43. A. Rahal, S.M. Borchani, K. Guidara, M. Megdiche, Electrical, dielectric properties and study of AC electrical conduction mechanism of Li0.9 □ 0.1 NiV0.5 P0.5 O4. R. Soc. Open Sci. 5, 171472 (2018). https://doi.org/10.1098/rsos.171472

    Article  ADS  Google Scholar 

  44. B. Roling, What do electrical conductivity and electrical modulus spectra tell us about the mechanisms of ion transport processes in melts, glasses, and crystals? J. Non-Cryst. Solids 244, 34–43 (1999). https://doi.org/10.1016/S0022-3093(98)00847-3

    Article  ADS  Google Scholar 

  45. E.K. Abdel-Khalek, E.A. Mohamed, S.M. Salem, I. Kashif, Structural and dielectric properties of (100–x)B2O3-(x/2)Bi2O3–(x/2)Fe2O3 glasses and glass-ceramic containing BiFeO3 phase. J. Non-Cryst. Solids 492, 41–49 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.04.020

    Article  ADS  Google Scholar 

  46. Z.Q. Deng, W.S. Yang, W. Liu, C.S. Chen, Relationship between transport properties and phase transformations in mixed-conducting oxides. J. Solid State Chem. 179, 362–369 (2006). https://doi.org/10.1016/j.jssc.2005.10.027

    Article  ADS  Google Scholar 

  47. N. Karan, B. Natesan, R. Katiyar, Structural and lithium ion transport studies in borophosphate glasses. Solid State Ion. 177, 1429–1436 (2006). https://doi.org/10.1016/j.ssi.2006.07.032

    Article  Google Scholar 

  48. A.K. Jonscher, The interpretation of non-ideal dielectric admittance and impedance diagrams. Phys. Stat. Sol. (a) 32, 665–676 (1975). https://doi.org/10.1002/pssa.2210320241

    Article  ADS  Google Scholar 

  49. A. Chakir, B. Mehdaoui, A. Chari, L. Bih, A. El Bouari, Structural and dielectric properties of PrFeTiO5 oxide. J. Mater. Sci. Mater. Electron. 33, 6150–6167 (2022). https://doi.org/10.1007/s10854-022-07791-z

    Article  Google Scholar 

  50. T. Lakshmana Rao, M.K. Pradhan, S. Singh, S. Dash, Influence of Zn(II) on the structure, magnetic and dielectric dynamics of nano-LaFeO3. J. Mater. Sci. Mater. Electron. 31, 4542–4553 (2020). https://doi.org/10.1007/s10854-020-03005-6

    Article  Google Scholar 

  51. M. Boora, S. Malik, V. Kumar, M. Bala, S. Arora, S. Rohilla, A. Kumar, J. Dalal, Investigation of structural and impedance spectroscopic properties of borate glasses with high Li+ concentration. Solid State Ion. 368, 115704 (2021). https://doi.org/10.1016/j.ssi.2021.115704

    Article  Google Scholar 

  52. A. Yadav, M.S. Dahiya, P. Narwal, A. Hooda, A. Agarwal, S. Khasa, Electrical characterization of lithium bismuth borate glasses containing cobalt/vanadium ions. Solid State Ion. 312, 21–31 (2017). https://doi.org/10.1016/j.ssi.2017.10.006

    Article  Google Scholar 

  53. P. Pant, H. Agarwal, S. Bharadwaj, O.N. Srivastava, M.A. Shaz, Relaxor ferroelectric phase transition and ac conduction in polycrystalline Gd0.55Ca0.45MnO3 at low temperature. Mater. Chem. Phys. 267, 124586 (2021). https://doi.org/10.1016/j.matchemphys.2021.124586

    Article  Google Scholar 

  54. M. Mohamed, K.I. Nassar, M. Mohamed, N. Rammeh, M.P.F. Graça, Effects of partial Li-substitution on structural, electrical and dielectric properties in La1-xLixSrMn2O5+δ(x = 0.05, 0.10 and 0.15) brownmillerite oxides. J. Mol. Struct. 1258, 132658 (2022). https://doi.org/10.1016/j.molstruc.2022.132658

    Article  Google Scholar 

  55. M. Coşkun, Ö. Polat, F.M. Coşkun, Z. Durmuş, M. Çağlar, A. Türüt, Frequency and temperature dependent electrical and dielectric properties of LaCrO3 and Ir doped LaCrO3 perovskite compounds. J. Alloy. Compd. 740, 1012–1023 (2018). https://doi.org/10.1016/j.jallcom.2018.01.022

    Article  Google Scholar 

  56. Y. Ben Taher, A. Oueslati, M. Gargouri, Ac conductivity and NSPT model conduction of KAlP2O7 compound. Ionics 21, 1321–1332 (2015). https://doi.org/10.1007/s11581-014-1288-8

    Article  Google Scholar 

  57. Z. Chu, M. Yang, P. Schulz, D. Wu, X. Ma, E. Seifert, L. Sun, X. Li, K. Zhu, K. Lai, Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites. Nat. Commun. 8, 2230 (2017). https://doi.org/10.1038/s41467-017-02331-4

    Article  ADS  Google Scholar 

  58. S. Thakur, R. Rai, I. Bdikin, M.A. Valente, Impedance and modulus spectroscopy characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 ceramics. Mat. Res. 19, 1–8 (2016). https://doi.org/10.1590/1980-5373-MR-2015-0504

    Article  Google Scholar 

  59. M. Belal Hossen, A.K.M. Akther Hossain, Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4. J Adv. Ceram. 4, 217–225 (2015). https://doi.org/10.1007/s40145-015-0152-2

    Article  Google Scholar 

  60. N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Impedance spectroscopy of multiferroic Pb Zrx Ti1–x O3/Co Fe2O4 layered thin films. Phys. Rev. B 77, 014111 (2008). https://doi.org/10.1103/PhysRevB.77.014111

    Article  ADS  Google Scholar 

Download references

Acknowledgements

No specific grant for this research was provided by funding organizations in the public, private, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AC: conceptualization, characterization, analysis, interpretation, writing the original draft. SA: characterizing, analyzing, and writing the original draft. BM: analysis, interpretation and discussions, validation, revision. AEB: verification and revision of the written work.

Corresponding author

Correspondence to Adil Chakir.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakir, A., Aqdim, S., Mehdaoui, B. et al. Deciphering driven phase transitions: a study on the dielectric and electrical properties of Ca2Fe2O5. Eur. Phys. J. B 97, 40 (2024). https://doi.org/10.1140/epjb/s10051-024-00682-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00682-8

Navigation