Skip to main content
Log in

Robust photogalvanic effect in the armchair B2C4P2 photodetector by vacancy and substitution-doping

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this study, we investigated the linear photogalvanic effect (PGE) phenomena in an armchair photodetector device based on the B2C4P2 monolayer, which was predicted and studied in a previous work (J Phys Chem Lett 12:3436–3442, 2021). The produced photocurrents show a cosine relation with the incident angles, and the vacancies and substitution-doping can significantly enhance the photocurrents generated and form robust PGEs due to the incremental asymmetry in the B2C4P2 photodetector. Additionally, the armchair B2C4P2 photodetector possesses a very high extinction ratio corresponding to a more sensitive polarization detection. This work demonstrates that the B2C4P2 monolayer can be used as the high-performance PGE-driven photodetector in low-energy-consumption optoelectronics devices.

Graphical abstract

Robust photogalvanic effect (PGE) phenomena and very high extinction ratio have been produced in the armchair B2C4P2 photodetector with the vacancies and substitution-doping included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

There are no data associated with the manuscript.

References

  1. S. Pinilla, J. Coelho, K. Li, J. Liu, V. Nicolosi, Nat. Rev. Mater. 7, 717–735 (2022)

    Article  ADS  Google Scholar 

  2. Ch.L. Tan, X.H. Cao, X.J. Wu, Q.Y. He, J. Yang, X. Zhang, J.Z. Chen, W. Zhao, Chem. Rev. 117(9), 6225–6331 (2017)

    Article  CAS  PubMed  Google Scholar 

  3. J. Yang, Zh.Y. Zeng, J. Kang, S. Betzler, C. Czarnik, X.W. Zhang, C. Ophus, Ch. Yu, K. Bustillo, M. Pan, JSh. Qiu, L.W. Wang, H.M. Zheng, Nat. Mater. 18, 970–976 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Zh.W. Zhang, Z.W. Huang, J. Li, D. Wang, Y. Lin, X.D. Yang, H. Liu, S. Liu, Y.L. Wang, B. Li, X.F. Duan, X.D. Duan, Nat. Nanotech. 17, 493–499 (2022)

    Article  ADS  CAS  Google Scholar 

  5. X.B. Liu, S.Q. Hu, D.Q. Chen, M.X. Guan, Q. Chen, S. Meng, Nano Lett. 22, 4800–4806 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. X. Fu, X.L. Cheng, ChZh. He, J. Lin, W.H. Liao, L.M. Li, J.Y. Guo, Phys. Chem. Chem. Phys. 25, 2430 (2023)

    Article  CAS  PubMed  Google Scholar 

  7. X. Fu, H.Y. Yang, L. Fu, ChZh. He, J.R. Huo, J.Y. Guo, L.M. Li, Chin. Chem. Lett. 32, 1089–1094 (2021)

    Article  CAS  Google Scholar 

  8. P. Jiang, X.X. Tao, H. Hao, Y.S. Liu, X.H. Zheng, Zh. Zeng, NPJ Quantum Inf. 7, 21 (2021)

    Article  ADS  Google Scholar 

  9. Y.J. Li, X.F. Shang, Y.H. Zhou, X.H. Zheng, Phys. Chem. Chem. Phys. 25, 24428–24435 (2023)

    Article  CAS  PubMed  Google Scholar 

  10. Y.J. Li, H. Hao, X.F. Shang, Y.H. Zhou, X.H. Zheng, IEEE Trans. Electron Devices 70, 3908–3914 (2023)

    Article  ADS  CAS  Google Scholar 

  11. Y.J. Li, X.F. Shang, Y.H. Zhou, X.H. Zheng, Phys. Chem. Chem. Phys. 25, 2890–2896 (2023)

    Article  CAS  PubMed  Google Scholar 

  12. X.F. Shang, Y.J. Li, R. Cao, Y.H. Zhou, W. Wan, X.H. Zheng, Opt. Express 31, 36263–36272 (2023)

    Article  ADS  PubMed  Google Scholar 

  13. X. Fu, J.Y. Guo, L.M. Li, T.A. Dai, Chem. Phys. Lett. 726, 69–76 (2019)

    Article  ADS  CAS  Google Scholar 

  14. A.A. Kistanov, S.A. Shcherbinin, S.V. Ustiuzhanina, M. Huttula, W. Cao, V.R. Nikitenko, O.V. Prezhdo, J. Phys. Chem. Lett. 12, 3436–3442 (2021)

    Article  CAS  PubMed  Google Scholar 

  15. D.W. Zhou, Zh. Wang, J.B. Cheng, Ch.Y. Pu, Processes 10, 1809 (2022)

    Article  CAS  Google Scholar 

  16. X. Fu, J. Lin, X.L. Cheng, W.H. Liao, J.Y. Guo, X.W. Li, L.M. Li, Mater. Today Commun. 35, 106175 (2023)

    Article  CAS  Google Scholar 

  17. L.W. Zhang, J. Chen, L. Zhang, F.M. Xu, L.T. Xiao, S.T. Jia, Carbon 173, 565–571 (2021)

    Article  CAS  Google Scholar 

  18. Y.H. Zhou, Sh.H. Yu, Y.J. Li, X. Luo, X.H. Zheng, L. Zhang, Nanophotonics 10(6), 1701–1709 (2021)

    Article  CAS  Google Scholar 

  19. Y. Ni, J. Li, W. Tao, H. Ding, R.X. Li, Phys. Chem. Chem. Phys. 23, 2753 (2021)

    Article  CAS  PubMed  Google Scholar 

  20. P. Jiang, L.L. Kang, X.X. Tao, N. Cao, H. Hao, X.H. Zheng, L. Zhang, Z. Zeng, J. Phys. Condens. Matter Phys.: Condens. Matter 31, 495701 (2019)

    Article  CAS  Google Scholar 

  21. Zh.T. Fu, P.L. Yan, J. Li, S.F. Zhang, Ch.Y. He, T. Ouyang, Ch.X. Zhang, Ch. Tang, J.X. Zhong, Nanoscale 14, 11316–11322 (2022)

    Article  CAS  PubMed  Google Scholar 

  22. J. Chen, L.W. Zhang, L. Zhang, X.H. Zheng, L.T. Xiao, S.T. Jia, J. Wang. Phys. Chem. Chem. Phys. 20, 26744–26751 (2018)

    Article  CAS  Google Scholar 

  23. J. Zhao, Y.B. Hu, Y.Q. Xie, L. Zhang, Y. Wang, Phys. Rev. Appl. 14, 064003 (2020)

    Article  ADS  CAS  Google Scholar 

  24. C.C. Sun, Y.X. Wang, Y.J. Jiang, Zh.D. Yang, G.L. Zhang, Y.Y. Hu, New J. Chem. 43, 377–385 (2019)

    Article  CAS  Google Scholar 

  25. X.X. Tao, P. Jiang, Y.J. Dong, X.F. Yang, X.H. Zheng, YSh. Liu, Phys. Chem. Chem. Phys. 24, 17131–17139 (2022)

    Article  CAS  PubMed  Google Scholar 

  26. Y.Q. Yang, L.W. Zhang, X.H. Zheng, J. Chen, L.T. Xiao, S.T. Jia, L. Zhang, Phys. Chem. Chem. Phys. 25, 16363–16370 (2023)

    Article  CAS  PubMed  Google Scholar 

  27. NZh. Sun, H. Ye, R. Quhe, Y.M. Liu, MCh. Wang, Appl. Surf. Sci. 619, 156730 (2023)

    Article  CAS  Google Scholar 

  28. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  CAS  Google Scholar 

  29. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. YZh. Luo, Y.Q. Xie, J. Zhao, Y.B. Hu, X. Ye, S.H. Ke, Phys. Rev. Mater. 5, 054004 (2021)

    Article  ADS  CAS  Google Scholar 

  31. Y.M. Zhang, R.G. Cao, Y.B. Hu, Y. Wang, Y.Q. Xie, Appl. Surf. Sci. 560, 149907 (2021)

    Article  CAS  Google Scholar 

  32. Y.Q. Xie, L. Zhang, Y. Zhu, L. Liu, H. Guo, Nanotechnology 26, 455202 (2015)

    Article  ADS  PubMed  Google Scholar 

  33. Zh.H. Xu, B. Luo, M.Y. Chen, W.Z. Xie, Y.B. Hu, X.B. Xiao, Appl. Surf. Sci. 548, 148751 (2021)

    Article  CAS  Google Scholar 

  34. X. Fu, X.L. Cheng, W.H. Liao, J.Y. Guo, H.X. Gao, L.M. Li, Phys. Status Solidi RRL 2022, 2200132 (2022)

    Article  Google Scholar 

  35. Zh.T. Fu, P.L. Yan, J. Li, Ch.Y. He, T. Ouyang, Ch.X. Zhang, Ch. Tang, J.X. Zhong, Phys. Status Solidi RRL 14(12), 2000395 (2020)

    Article  CAS  Google Scholar 

  36. J.H. Wu, F. Zhai, J.Q. Lu, J. Wu, X. Feng, Mater. Today Commun. 24, 101154 (2020)

    Article  CAS  Google Scholar 

  37. ShSh. Li, T. Wang, XSh. Chen, W. Lu, Y.Q. Xie, Y.B. Hu, Nanoscale 10, 7694–7701 (2018)

    Article  CAS  PubMed  Google Scholar 

  38. YZh. Luo, Y.B. Hu, Y.Q. Xie, J. Mater. Chem. A 7, 27503 (2019)

    Article  CAS  Google Scholar 

  39. R. Graham, C. Miller, O. Eunsoon, Y. Dong, Nano Lett. 11, 71722 (2010)

    Google Scholar 

  40. B. Luo, X.N. Ma, J.J. Liu, W. Wu, X. Yu, Sh.B. Hu, H. Gao, F.H. Jia, W. Rena, Physica E 142, 115297 (2022)

    Article  CAS  Google Scholar 

  41. L.Y. Qian, J. Zhao, Y.Q. Xie, Front. Phys. 17, 13502 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Hongzhiwei Cloud Platform for providing computer time and technical support. This work was supported by the National Natural Science Foundation of China (Grant Numbers 12264016, 11304128, 11664010), the Hunan Natural Science Foundation of China (Grant Numbers 2023JJ50413, 2020JJ2015, 2021JJ30549), the Scientific Research Foundation of the Education Department of Hunan Province (Grant Number 22A0579), and the Construct Program of Applied Characteristic Discipline in Hunan University of Science and Engineering (Mathematics, Education, Electronic Science and Technology).

Author information

Authors and Affiliations

Authors

Contributions

Xi Fu, Jian Lin, Wenhu Liao, and Jiyuan Guo performed calculations. Xiaowu Li, Jian Lin, and Jiyuan Guo performed data analysis. All authors read and contributed to the manuscript.

Corresponding authors

Correspondence to Xi Fu or Xiaowu Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 867 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Lin, J., Liao, W. et al. Robust photogalvanic effect in the armchair B2C4P2 photodetector by vacancy and substitution-doping. Eur. Phys. J. B 97, 8 (2024). https://doi.org/10.1140/epjb/s10051-023-00632-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00632-w

Navigation