Skip to main content
Log in

Modulation of frictional torque of nanoparticle near graphene-covered SiC nanowires

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the frictional torque acting on a nanoparticle rotating near graphene-covered SiC nanowires. The physical mechanisms for the enhancement of the frictional torque acting on the nanoparticle are analyzed in detail. We find that the frictional torque is intensively dependent on the rotation frequency of the nanoparticle, the filling factor of SiC nanowires, and the chemical potential of graphene. Several peaks appear in the frictional torque curve as the rotation frequency of the nanoparticle increases. When the rotation frequency is small, the frictional torque increases linearly with the rotation frequency. While the relationship between frictional torque and rotation frequency is complex when the rotation frequency becomes large. The frictional torque increases as the chemical potential increases at a low rotation frequency. However, at high rotation frequency, the frictional torque increases quickly as the chemical potential increases, while it will decrease as the chemical potential continues to increase after reaching the maximum value. The results obtained in this work are meaningful for understanding the Casimir friction.

Graphical abstract

The relationship between the frictional torque and the rotation frequency of nanoparticle near different configurations. The frictional torque increases linearly with rotation frequency when it is small, while the relationship between frictional torque and rotation frequency is complex when it is large. The chemical potential of graphene is set to \(\mu =0.1\) eV and the filling factor of SiC nanowires is set to \(f=0.5\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data.]

References

  1. H. Casimir, On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793 (1948)

    Google Scholar 

  2. E.M. Lifshitz, The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73 (1956)

    Google Scholar 

  3. J. B. Pendry, Shearing the vacuum-quantum friction. J. Phys.: Condens. Matter 9, 10301 (1997).

  4. A.I. Volokitin, B.N.J. Persson, Near-field radiative heat transfer and noncontact friction. Rev. Mod. Phys. 79, 1291 (2007)

    ADS  Google Scholar 

  5. A.I. Volokitin, B.N.J. Persson, Quantum friction. Phys. Rev. Lett. 106, 094502 (2011)

    ADS  Google Scholar 

  6. I. Dorofeyev, H. Fuchs, G. Wenning, B. Gotsmann, Brownian motion of microscopic solids under the action of fluctuating electromagnetic fields. Phys. Rev. Lett. 83, 2402 (1999)

    ADS  Google Scholar 

  7. B.C. Stipe, H.J. Mamin, T.D. Stowe, T.W. Kenny, D. Rugar, Noncontact friction and force fluctuations between closely spaced bodies. Phys. Rev. Lett. 87, 096801 (2001)

    ADS  Google Scholar 

  8. A.I. Volokitin, B.N.J. Persson, Noncontact friction between nanostructures. Phys. Rev. B 68, 155420 (2003)

    ADS  Google Scholar 

  9. K. Saitoh, K. Hayashi, Y. Shibayama, K. Shirahama, Gigantic maximum of nanoscale noncontact friction. Phys. Rev. Lett. 105, 236103 (2010)

    ADS  Google Scholar 

  10. J.-H. She, A.V. Balatsky, Noncontact friction and relaxational dynamics of surface defects. Phys. Rev. Lett. 108, 136101 (2012)

    ADS  Google Scholar 

  11. U.D. Jentschura, M. Janke, M. Dekieviet, Theory of noncontact friction for atom-surface interactions. Phys. Rev. A 94, 022510 (2016)

    ADS  Google Scholar 

  12. F. Intravaia, R.O. Behunin, D.A.R. Dalvit, Quantum friction and fluctuation theorems. Phys. Rev. A 89, 050101 (2014)

    ADS  Google Scholar 

  13. F. Intravaia, R.O. Behunin, C. Henkel, K. Busch, D.A.R. Dalvit, Non-Markovianity in atom-surface dispersion forces. Phys. Rev. A 94, 042114 (2016)

    ADS  Google Scholar 

  14. J. Klatt, R. Bennett, and S. Yoshi Buhmann, Spectroscopic signatures of quantum friction. Phys. Rev. A 94, 063803 (2016).

  15. P. Barcellona, H. Safari, A. Salam, and S. Yoshi Buhmann, Enhanced chiral discriminatory van der Waals interactions mediated by chiral surfaces. Phys. Rev. Lett. 118, 193401 (2017).

  16. F. Intravaia, R.O. Behunin, C. Henkel, K. Busch, D.A.R. Dalvit, Failure of local thermal equilibrium in quantum friction. Phys. Rev. Lett. 117, 100402 (2016)

    ADS  Google Scholar 

  17. D. Reiche, D.A.R. Dalvit, K. Busch, F. Intravaia, Spatial dispersion in atom-surface quantum friction. Phys. Rev. B 95, 155448 (2017)

    ADS  Google Scholar 

  18. M.B. Farias, W.J.M. Kort-Kamp, D.A.R. Dalvit, Quantum friction in two-dimensional topological materials. Phys. Rev. B 97, 161407 (2018)

    ADS  Google Scholar 

  19. V. Despoja, P.M. Echenique, M. Šunjić, Quantum friction between oscillating crystal slabs: Graphene monolayers on dielectric substrates. Phys. Rev. B 98, 125405 (2018)

    ADS  Google Scholar 

  20. R. R. Q. P. T. Oude Weernink, P. Barcellona, and S. Y. Buhmann, Lateral Casimir-Polder forces by breaking time-reversal symmetry. Phys. Rev. A 97, 032507 (2018).

  21. M. Oelschläger, K. Busch, F. Intravaia, Nonequilibrium atom-surface interaction with lossy multilayer structures. Phys. Rev. A 97, 062507 (2018)

    ADS  Google Scholar 

  22. F. Intravaia, M. Oelschläger, D. Reiche, D.A.R. Dalvit, K. Busch, Quantum rolling friction. Phys. Rev. Lett. 123, 120401 (2019)

    ADS  Google Scholar 

  23. D. Reiche, F. Intravaia, J.-T. Hsiang, K. Busch, L.B. Hu, Nonequilibrium thermodynamics of quantum friction. Phys. Rev. A 102, 050203 (2020)

    MathSciNet  ADS  Google Scholar 

  24. T.-B. Wang, N.-H. Liu, J.-T. Liu, T.-B. Yu, Quantum friction controlled by plasmons between graphene sheets. Eur. Phys. J. B. 87, 185 (2014)

    ADS  Google Scholar 

  25. R. Luo, J.-R. Yang, T.-B. Wang, D.-J. Zhang, W.-X. Liu, T.-B. Yu, Q.-H. Liao, Enhancement of Casimir friction between graphene-covered hyperbolic materials. Phys. Lett. A 387, 127006 (2021)

    Google Scholar 

  26. T. Yu, R. Luo, T.B. Wang, D.J. Zhang, W.X. Liu, T.B. Yu, Q.H. Liao, Enhancement of Casimir friction between graphene-covered topological insulator. Nanomaterials 12, 1148 (2022)

    Google Scholar 

  27. A. Manjavacas, F.J. Rodríguez-Fortuño, F.J. García De Abajo, A.V. Zayats, Lateral Casimir force on a rotating particle near a planar surface. Phys. Rev. Lett. 118, 133605 (2017)

    ADS  Google Scholar 

  28. T.B. Wang, Y. Zhou, H.Q. Mu, K. Shehzad, D.J. Zhang, W.X. Liu, T.B. Yu, Q.H. Liao, Enhancement of lateral Casimir force on a rotating particle near hyperbolic metamaterial. Nanotechnology 33, 245001 (2022)

    ADS  Google Scholar 

  29. Q.-D. Jiang, F. Wilczek, Axial Casimir force. Phys. Rev. B 99, 165402 (2019)

    ADS  Google Scholar 

  30. A. Manjavacas, F.J. García De Abajo, Vacuum friction in rotating particles. Phys. Rev. Lett. 105, 113601 (2010)

    ADS  Google Scholar 

  31. A. Manjavacas, F.J. García De Abajo, Thermal and vacuum friction acting on rotating particles. Phys. Rev. A 82, 063827 (2010)

    ADS  Google Scholar 

  32. R.K. Zhao, A. Manjavacas, F.J. García De Abajo, J.B. Pendry, Rotational quantum friction. Phys. Rev. Lett. 109, 123604 (2012)

    ADS  Google Scholar 

  33. D. Pan, H.X. Xu, F.J. García De Abajo, Magnetically activated rotational vacuum friction. Phys. Rev. A 99, 062509 (2019)

    ADS  Google Scholar 

  34. T. Yu, W. You, T. Wang, T. Yu, Q. Liao, Giant enhancement of the axial Casimir force of a rotating particle near hyperbolic metasurface. Result in Physics 52, 106902 (2023)

    Google Scholar 

  35. C. Khandekar, S. Buddhiraju, P.R. Wilkinson, J.K. Gimzewski, A.W. Rodriguez, C. Chase, S.-H. Fan, Nonequilibrium lateral force and torque by thermally excited nonreciprocal surface electromagnetic waves. Phys. Rev. B 104, 245433 (2021)

    ADS  Google Scholar 

  36. Z. Xu, Z. Jacob, T. Li, Enhancement of rotational vacuum friction by surface photon tunneling. Nanophotonics 10, 537 (2021)

    Google Scholar 

  37. L. Ge, Negative vacuum friction in terahertz gain systems. Phys. Rev. B 108, 045406 (2023)

    ADS  Google Scholar 

  38. A. Poddubny, L. Lorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials. Nat. Photonics 7, 948 (2013)

    ADS  Google Scholar 

  39. Z.-W. Guo, H.-T. Jiang, H. Chen, Hyperbolic metamaterials: From dispersion manipulation to applications. J. Appl. Phys. 127, 071101 (2020)

    ADS  Google Scholar 

  40. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    ADS  Google Scholar 

  41. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005)

    ADS  Google Scholar 

  42. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).

  43. L.A. Falkovsky, S.S. Pershoguba, Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 76, 153410 (2007)

    ADS  Google Scholar 

  44. L. A. Falkovsky, Optical properties of graphene. J. Phys.: Conf. Ser. 129, 012004 (2008).

  45. T. Stauber, N.M.R. Peres, A.K. Geim, Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78, 085432 (2008)

    ADS  Google Scholar 

  46. H.B. Callen, T.A. Welton, Irreversibility and generalized noise. Phys. Rev. 83, 34 (1951)

    MathSciNet  ADS  Google Scholar 

  47. R. Kubo, The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255 (1966)

    ADS  Google Scholar 

  48. J.A. Crosse, S. Fuchs, S.Y. Buhmann, Electromagnetic Green’s function for layered topological insulators. Phys. Rev. A 92, 063831 (2015)

    ADS  Google Scholar 

  49. X.-L. Liu, R.Z. Zhang, Z.-M. Zhang, Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes. ACS Photonics 1, 785 (2014)

    Google Scholar 

  50. B. Zhao, B. Guizal, Z.M. Zhang, S.-H. Fan, M. Antezza, Near-field heat transfer between graphene/hBN multilayers. Phys. Rev. B 95, 245437 (2017)

    ADS  Google Scholar 

  51. M. Jablan, H. Buljan, M. Soljačić, Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009)

    ADS  Google Scholar 

  52. J.J. Saarinen, S.M. Weiss, P.M. Fauchet, J.E. Sipe, Reflectance analysis of a multilayer one-dimensional porous silicon structure: Theory and experiment. J. Appl. Phys. 104, 013103 (2008)

    ADS  Google Scholar 

  53. E.D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, 1985)

    Google Scholar 

  54. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A.M. Funston, C. Novo, P. Mulvaney, L.M. Liz-Marzán, F.J. García De Abajo, Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37, 1792 (2008)

    Google Scholar 

  55. H.C. Van De Hulst, Light Scattering by Small Particles (Dover, New York, 1981)

    Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Nos. 12164027, 12064025) and the Project of Preeminent Youth Fund of Jiangxi Province (Grant No. 20224ACB211002).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to this work.

Corresponding author

Correspondence to Tongbiao Wang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, W., Wang, T., Yu, T. et al. Modulation of frictional torque of nanoparticle near graphene-covered SiC nanowires. Eur. Phys. J. B 96, 156 (2023). https://doi.org/10.1140/epjb/s10051-023-00624-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00624-w

Navigation