Skip to main content
Log in

Energetical self-organization of a few strongly interacting particles

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the quantum self-organization of a few interacting particles with strong short-range interactions. The physical system is modeled via a 2D Hubbard square lattice model, with a nearest-neighbor interaction term of strength U and a second nearest-neighbor hopping t. For t=0, the energy of the system is determined by the number of bonds between particles that lie on adjacent sites in the Hubbard lattice. We find that this bond order persists for the ground and some of the excited states of the system, for strong interaction strength, at different fillings of the system. For our analysis, we use the Euler characteristic of the network/graph grid structures formed by the particles in real space (Fock states), which helps to quantify the energetical(bond) ordering. We find multiple ground and excited states, with integer Euler numbers, whose values persist from the \(t=0\) case, for strong interaction \(U>>t\). The corresponding quantum phases for the ground state contain either density-wave-order(DWO) for low fillings, where the particles stay apart form each other, or clustering-order(CO) for high fillings, where the particles form various structures as they condense into clusters. In addition, we find various excited states containing superpositions of Fock states, whose probability amplitudes are self-tuned in a way that preserves the integer value of the Euler characteristic from the \(t=0\) limit.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. All the numerical data from our calculations are displayed/plotted inside the figures.

References

  1. M. Tsuchiizu, A. Furusaki, Phys. Rev. Lett. 88, 056402 (2002)

    Article  ADS  Google Scholar 

  2. M. Murakami, J. Phys. Soc. Jpn. 69, 1113 (2000)

    Article  ADS  Google Scholar 

  3. D.K. Campbell, J.T. Gammel, E.Y. Loh Jr., Phys. Rev. B 42, 475 (1990)

    Article  ADS  Google Scholar 

  4. S.J. Gu, S.S. Deng, Y.Q. Li, H.-Q. Lin, Phys. Rev. Lett. 93, 086402 (2004)

    Article  ADS  Google Scholar 

  5. Guido Masella, Adriano Angelone, Fabio Mezzacapo, Guido Pupillo, V. Nikolay, Prokof’ev Phys. Rev. Lett. 123, 045301 (2019)

    Article  ADS  Google Scholar 

  6. I. Kleftogiannis, I. Amanatidis, Eur. Phys. J. B 92, 198 (2019)

    Article  ADS  Google Scholar 

  7. I. Kleftogiannis, I. Amanatidis, J. Stat. Mech. 083108 (2020)

  8. Ioannis Kleftogiannis, Ilias Amanatidis, Vladislav Popkov, J. Stat. Mech. 063102 (2019)

  9. Ioannis Kleftogiannis, Ilias Amanatidis, Eur. Phys. J. B 93, 84 (2020)

    Article  ADS  Google Scholar 

  10. Ioannis Kleftogiannis, Ilias Amanatidis, Eur. Phys. J. B 94, 41 (2021)

    Article  ADS  Google Scholar 

  11. F.D.M. Haldane, Phys. Rev. Lett. 45, 1358 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  12. F.D.M. Haldane, Phys. Lett. A 93, 464 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  13. I. Affleck, T. Kennedy, E.H. Lieb, H. Tasaki, Phys. Rev. Lett. 59, 799 (1987)

    Article  ADS  Google Scholar 

  14. M. Levin, X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006)

    Article  ADS  Google Scholar 

  15. Chen X, Gu Z.-C., Wen X.-G., Phys. Rev. B. 82, 155138 (2010)

  16. Kitaev A, Preskill J, Phys. Rev. Lett. 96, 110404 (2006)

  17. A.Y. Kitaev, Ann. Phys. 303, 2 (2003)

    Article  ADS  Google Scholar 

  18. V. Alba, M. Fagotti, P. Calabrese, J. Stat. Mech. P10020 (2009)

  19. Alba V, Haque M, Luchli M, Phys. Rev. Lett. 110(110), 260403 (2013)

  20. I. Hen, M. Rigol, Phys. Rev. B 80, 134508 (2009)

    Article  ADS  Google Scholar 

  21. A. Hamma, R. Ionicioiu, P. Zanardi, Phys. Rev. A 71, 022315 (2005)

    Article  ADS  Google Scholar 

  22. P. Calabrese, A. Lefevre, Phys. Rev. A f78, 032329 (2008)

    Article  ADS  Google Scholar 

  23. F. Pollmann, A.M. Turner, E. Berg, M. Oshikawa, Phys. Rev. B 81, 064439 (2010)

    Article  ADS  Google Scholar 

  24. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  Google Scholar 

  25. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

  26. D.C. Tsui, H.L. Stormer, A.C. Gossard, Phys. Rev. Lett. 48(48), 1559 (1982)

    Article  ADS  Google Scholar 

  27. E.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)

    Article  ADS  Google Scholar 

  28. H.L. Stormer, D.C. Tsui, A.C. Gossard, Rev. Mod. Phys. 71(S298), S305 (1999)

    Google Scholar 

  29. H. Li, F.D.M. Haldane, Phys. Rev. Lett. 101, 010504 (2008)

    Article  ADS  Google Scholar 

  30. F.D.M. Haldane, Phys. Rev. Lett. 107, 116801 (2011)

    Article  ADS  Google Scholar 

  31. B. Chen, G. Chen, Gauss-Bonnet formula, finiteness condition, and asymptotic characterization for graphs embedded in surfaces Graphs. Combin. 24, 159–183 (2008)

    MathSciNet  Google Scholar 

  32. O. Knill, A discrete Gauss-Bonnet type theorem, Elemente der Mathematik 67 (1): 1-44 (2012) arXiv:1009.2292 2010

  33. O. Knill, A graph theoretical Gauss-Bonnet-Chern theorem, arXiv:1111.5395 (2011)

Download references

Acknowledgements

We acknowledge the resources, infrastructure and financial support provided by the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), funded by the EC Research Innovation Action under the H2020 Programme, GRNET and the ARIS-GRNET computing network, along with the Physics Department at the University of Ioannina in Greece.

Author information

Authors and Affiliations

Authors

Contributions

Both authors I.K. and I.A. contributed equally to the design and implementation of the research, the analysis of the results and the writing of the manuscript.

Corresponding author

Correspondence to Ioannis Kleftogiannis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleftogiannis, I., Amanatidis, I. Energetical self-organization of a few strongly interacting particles. Eur. Phys. J. B 96, 151 (2023). https://doi.org/10.1140/epjb/s10051-023-00613-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00613-z

Navigation