Skip to main content
Log in

The enhancement of magnetism and the occurrence of phase transition in Fe doped g-C3N4 nanoribbons

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Two-dimensional graphene-like materials have numerous pores, large surface areas, and other excellent properties. And two-dimensional graphene-like materials have great potential in magnetic and spintronic devices. In this paper, we intercepted a fraction of g-C3N4 and prepared it into nanoribbons. We have calculated the g-C3N4 nanoribbons by studying the electronic structure of g-C3N4 nanoribbons to determine whether they can be used as spintronic and magnetic memory devices. Because the g-C3N4 nanoribbons have a narrow band gap and more overlapping wave functions, to turn the performance of the g-C3N4 nanoribbons, it was decided to dope transition metal Fe atoms. Subsequently, we found that the doped g-C3N4 nanoribbons with Fe atoms undergo a phase transition, from semiconducting property to half-metallic property, and the magnetic property of the g-C3N4 nanoribbons is enhanced by doped Fe atoms, so the performance of the g-C3N4 nanoribbons was improved.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

The data what support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Zhou, J. Zhao, Two-dimensional B-C–O alloys: a promising class of 2D materials for electronic devices. Nanoscale 8, 8910–8918 (2016)

    ADS  Google Scholar 

  2. X. Lin, S. Lin, Y. Xu, A.A. Hakro, T. Hasan, B. Zhang, B. Yu, J. Luo, E. Li, H. Chen, Ab initio study of the electronic and optical behavior of two-dimensional silicon carbide. J. Mater. Chem. C. 1, 2131–2135 (2013)

    Google Scholar 

  3. A. Bafekry, M. Faraji, C. Stampfl, I.A. Sarsari, A.A. Ziabari, N. Hieu, S. Karbasizadeh, M. Ghergherehchi, Band-gap engineering, magnetic behavior and Dirac-semimetal character in the MoSi2N4 nanoribbon with armchair and zigzag edges. J. Phys. D Appl. Phys. 55, 035301 (2021)

    ADS  Google Scholar 

  4. A. Bafekry, C. Stampfl, B. Akgenc, M. Ghergherehchi, Control of C3 N4 and C4 N3 carbon nitride nanosheets’ electronic and magnetic properties through embedded atoms. Phys. Chem. Chem. Phys. 22, 2249–2261 (2020)

    Google Scholar 

  5. S.G. Tan, M. Jalil, S.B. Kumar, G.C. Liang, Spin tunneling in multilayer spintronic devices. Phys. Rev. B 77, 439–446 (2008)

    Google Scholar 

  6. J. Kouvetakis, M. Todd, B. Wilkens, A. Bandari, N. Cave, Novel synthetic routes to carbon-nitrogen thin films. Chem. Mater. 6, 811–814 (1994)

    Google Scholar 

  7. C. Li, C.-B. Cao, H.-S. Zhu, Graphitic carbon nitride thin films deposited by electrodeposition. Mater. Lett. 58, 1903–1906 (2004)

    Google Scholar 

  8. B.V. Lotsch, W. Schnick, From triazines to heptazines: novel nonmetal tricyanomelaminates as precursors for graphitic carbon nitride materials. Chem. Mater. 18, 1891–1900 (2006)

    Google Scholar 

  9. E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, A.D. Norman, Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New. J. Chem. 26 (2002), 508–512.

  10. J. Sehnert, K. Baerwinkel, J. Senker, Ab initio calculation of solid-state NMR spectra for different triazine and heptazine-based structure proposals of g-C3N4. J. Phys. Chem. B 111, 10671–10680 (2007)

    Google Scholar 

  11. Y. Xu, S.-P. Gao, Band gap of C3N4 in the GW approximation. IET. J. Hydrogen. Energ. 37, 11072–11080 (2012)

    Google Scholar 

  12. S. Kattel, Magnetic properties of 3d transition metals and nitrogen functionalized armchair graphene nanoribbon. RSC Adv. 3, 21110–21117 (2013)

    ADS  Google Scholar 

  13. R. Longo, J. Carrete, L. Gallego, Ab initio study of 3 d, 4 d, and 5 d transition metal adatoms and dimers adsorbed on hydrogen-passivated zigzag graphene nanoribbons Phys. Rev. B. 83, 235415 (2011)

    Google Scholar 

  14. N. Gorjizadeh, A.A. Farajian, K. Esfarjani, Y. Kawazoe, Spin and band-gap engineering in doped graphene nanoribbons. Phys. Rev. B 78, 155427 (2008)

    ADS  Google Scholar 

  15. Y. Wang, H.-P. Cheng, Interedge magnetic coupling in transition-metal terminated graphene nanoribbons. Phys. Rev. B 83, 113402 (2011)

    ADS  Google Scholar 

  16. H. Sevinçli, M. Topsakal, E. Durgun, S. Ciraci, Electronic and magnetic properties of 3 d transition-metal atom adsorbed graphene and graphene nanoribbons. Phys. Rev. B 77, 195434 (2008)

    ADS  Google Scholar 

  17. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Sci. 319, 1229–1232 (2008)

    ADS  Google Scholar 

  18. M. Topsakal, H. Sevinçli, S. Ciraci, Spin confinement in the superlattices of graphene ribbons. Appl. Phys. Lett. 92, 173118 (2008)

    ADS  Google Scholar 

  19. A. Saffarzadeh, R. Farghadan, A spin-filter device based on armchair graphene nanoribbons Appl. Phys. Lett. 98, 023106 (2011)

    Google Scholar 

  20. D. Soriano, F. Munoz-Rojas, J. Fernández-Rossier, J. Palacios, Hydrogenated graphene nanoribbons for spintronics. Phy. Rev. B. 81, 165409 (2010)

    ADS  Google Scholar 

  21. F. Cervantes-Sodi, G. Csányi, S. Piscanec, A.C. Ferrari, Edge-functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties. Phys. Rev. B 77, 165427 (2008)

    ADS  Google Scholar 

  22. Y. Li, Z. Zhou, P. Shen, Z. Chen, Spin gapless semiconductor− metal− half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano 3, 1952–1958 (2009)

    Google Scholar 

  23. Y. Wang, C. Cao, H.-P. Cheng, Metal-terminated graphene nanoribbons. Phys. Rev. B 82, 205429 (2010)

    ADS  Google Scholar 

  24. V. Rigo, T. Martins, A.J. da Silva, A. Fazzio, R. Miwa, Electronic, structural, and transport properties of Ni-doped graphene nanoribbons. Phys. Rev. B. 7 (2009)9, 075435.

  25. D.-E. Jiang, B.G. Sumpter, S. Dai, 2007 Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J. Chem. Phys. 126, 134701 (2007)

    ADS  Google Scholar 

  26. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993)

    ADS  Google Scholar 

  27. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996)

    Google Scholar 

  28. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    ADS  Google Scholar 

  29. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  30. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    ADS  Google Scholar 

  31. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    ADS  Google Scholar 

  32. D. Fan, M. Yin, M. Zhu, H. Li, Z. Wang, H. Hu, F. Guo, Z. Feng, J. Li, X. Hu, Tailored modifications of the electronic properties of g-C3N4/C2N-h2D nanoribbons by first-principles calculations. Phys. Chem. Chem. Phys. 25, 1153–1160 (2023)

    Google Scholar 

  33. Z. Zheng, X. Wang, W. Mi, Tunable electronic structure and spin splitting in single and multiple Fe-adsorbed g-C2N with different layers: A first-principles study. J. Phys. Chem. Solids 115(2018), 221–227 (2018)

    ADS  Google Scholar 

  34. H. Li, H. Hu, C. Bao, J. Hua, H. Zhou, X. Liu, X. Liu, M. Zhao, Tensile strain induced half-metallicity in graphene-like carbon nitride. Phys. Chem. Chem. Phys. 17, 6028–6035 (2015)

    Google Scholar 

  35. H. Li, H. Hu, C. Bai, C. Bao, Z. Feng, F. Guo, The metal-free magnetism and ferromagnetic narrow gap semiconductor properties in graphene-like carbon nitride. Physica B 555, 91–95 (2019)

    ADS  Google Scholar 

  36. A. Du, S. Sanvito, S.C. Smith, First-principles prediction of metal-free magnetism and intrinsic half-metallicity in graphitic carbon nitride. Phys. Rev. Lett. 108, 197207 (2012)

    ADS  Google Scholar 

  37. D. Kong, X. Hu, J. Geng, Y. Zhao, D. Fan, Y. Lu, W. Geng, D. Zhang, J. Liu, H. Li, Growing ZnIn2S4 nanosheets on FeWO4 flowers with pn heterojunction structure for efficient photocatalytic H2 production. Appl. Suef. Sci. 591, 153256 (2022)

    Google Scholar 

  38. X. Su, D. Fan, H. Sun, J. Yang, Z. Yu, D. Zhang, X. Pu, H. Li, P. Cai, One-dimensional rod-shaped Ag2Mo2O7/BiOI nn junctions for efficient photodegradation of tetracycline and rhodamine B under visible light. J. Alloy. Compd. 912, 165184 (2022)

    Google Scholar 

  39. X. Jiang, Z. Wang, M. Zhang, M. Wang, R. Wu, X. Shi, B. Luo, D. Zhang, X. Pu, H. Li, A novel direct Z-scheme heterojunction BiFeO3/ZnFe2O4 photocatalyst for enhanced photocatalyst degradation activity under visible light irradiation. J. Alloy. Compd. 912, 165185 (2022)

    Google Scholar 

  40. H. Li, X. Hu, D. Fan, Z. Wang, H. Hu, F. Guo, Z. Feng, J. Li, M. Yin, Z. Li, Doping atom improves photocatalytic performance in a new metal-free organic photocatalyst for water splitting. Phys. Chem. Chem. Phys. 24, 29350–29356 (2022)

    Google Scholar 

  41. L. Panchakarla, A. Govindaraj, C. Rao, Boron-and nitrogen-doped carbon nanotubes and graphene. Inorg. Chim. Acta 363, 4163–4174 (2010)

    Google Scholar 

  42. L. Zhao, X. Chen, X. Wang, Y. Zhang, W. Wei, Y. Sun, M. Antonietti, M.-M. Titirici, One-step solvothermal synthesis of a carbon@ TiO2 dyad structure effectively promoting visible-light photocatalysis. Adv. Mater. 22, 3317 (2010)

    Google Scholar 

  43. Y. Zhao, L. Liu, W. Zhang, C. Sue, Q. Li, O. Sˇ, Miljanic, OM Yaghi, and JF Stoddart Chem.–Eur. J. 15 (2009), 13356–13380.

  44. D. Fan, Z. Wang, H. Li, H. Hu, C. Bai, F. Guo, Z. Feng, J. Li, X. Hu, M. Yin, The Schottky barrier of heterojunction improves the photocatalytic efficiency in graphene-like composites Physica B: Condensed Matter. 637 (2022), 413852

  45. H. Li, H. Hu, C. Bai, C. Bao, C. Liu, Q. Wang, F. Guo, Z. Feng, H. Yu, M. Chen, Prediction of a stable organic metal-free porous material as a catalyst for water-splitting. Cata. 10, 836 (2020)

    Google Scholar 

  46. H. Li, H. Hu, C. Bao, Z. Feng, F. Guo, G. Tian, Y. Liu, Potential application of a porous graphitic carbon nitride as an organic metal-free photocatalyst for water splitting. Diam. Relat. Mater. 87, 50–55 (2018)

    ADS  Google Scholar 

  47. H. Li, H. Hu, C. Bai, C. Bao, F. Guo, Z. Feng, Y. Liu, The charge regulation of electronic structure and optical properties of graphitic carbon nitride under strain. Rsc. Adv. 9, 7464–7468 (2019)

    ADS  Google Scholar 

  48. H. Li, H. Hu, C. Bao, F. Guo, X. Zhang, X. Liu, J. Hua, J. Tan, A. Wang, H. Zhou, Forming heterojunction: an effective strategy to enhance the photocatalytic efficiency of a new metal-free organic photocatalyst for water splitting. Sci. Rep-Uk. 6, 1–10 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Shandong Provincial Key Research and Development Program (Public Welfare Science and Technology Research) (No. 2019GGX103010), Liaocheng Key Research and Development Program (Policy guidance category) (No. 2022YDSF90), Science and Technology Planning Project of Higher School in Shandong Province (No. J18KA243), and Liaocheng University High-level Talents & Ph.D. Research Startup Foundation (No. 318051619).

Author information

Authors and Affiliations

Authors

Contributions

ZW: validation, formal analysis, data curation, writing—original draft. XJ: data curation, methodology. DF: formal analysis, resources. HL: writing- reviewing and editing, funding acquisition, methodology. XP: funding acquisition, resources. HH: supervision. FG: software, validation. ZF and JL: software. MY, MZ: validation. DZ, ZL and XH: resources.

Corresponding authors

Correspondence to Hengshuai Li or Xipeng Pu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests to this work. We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled “The enhancement of magnetism and the occurrence of phase transition in Fe doped g-C3N4 nanoribbons”.

Research involving human participants and/or animals

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Zhihao Wang and Xue Jiang Joint first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Jiang, X., Fan, D. et al. The enhancement of magnetism and the occurrence of phase transition in Fe doped g-C3N4 nanoribbons. Eur. Phys. J. B 96, 145 (2023). https://doi.org/10.1140/epjb/s10051-023-00607-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00607-x

Navigation