Skip to main content
Log in

Investigation of anisotropic upper critical magnetic field in two-band model for the copper-based superconductors \(\mathbf {YBa_{2}Cu_{4}O_{8}}\) and \(\mathbf {Bi_{2}Sr_{2}CaCu_{2}O_{8}}\)

  • Regular Article – Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This research work focuses on the theoretical investigation of upper critical magnetic field (\(H_{C2}\)), lower critical magnetic field (\(H_{C1}\)), Ginzburg-Landau coherence length (\(\xi _{GL}\)) and Ginzburg-Landau penetration depth (\(\lambda _{GL}\)) in two-band model for the copper-based superconductors \(\hbox {YBa}_{2}\hbox {Cu}_{4}\hbox {O}_{8}\) and \(\hbox {Bi}_{2}\hbox {Sr}_{2}\hbox {CaCu}_{2}\hbox {O}_{8}\). By employing the phenomenological Ginzburg-Landau (GL) free energy density functional theory in two-band model in the presence of two superconducting order parameters, we obtained the mathematical expressions for the temperature dependence of the upper critical magnetic field (\(H_{C2}(T)\)) and lower critical magnetic field (\(H_{C1}(T)\)); the angular dependence of upper critical magnetic field, \(H_{C2}(\theta )\); the temperature dependence of GL coherence length, \(\xi _{GL}(T)\) and GL penetration depth, \(\lambda _{GL}(T)\) for the superconductors \(\hbox {YBa}_{2}\hbox {Cu}_{4}\hbox {O}_{8}\) and \(\hbox {Bi}_{2}\hbox {Sr}_{2}\hbox {CaCu}_{2}\hbox {O}_{8}\). By using the experimental values in the obtained expressions, the phase diagrams for the temperature dependence of upper critical magnetic fields parallel, \(H^{\Vert c}_{C2}(T)\) and perpendicular, \(H_{C2}^{\perp c}(T)\) to the crystallographic c-axis are plotted for \(\hbox {YBa}_{2}\hbox {Cu}_{4}\hbox {O}_{8}\) and \(\hbox {Bi}_{2}\hbox {Sr}_{2}\hbox {CaCu}_{2}\hbox {O}_{8}\). Similarly, using the obtained expressions the phase diagrams for the angular dependence of upper critical magnetic field, \(H_{C2}(\theta )\) are plotted for \(\hbox {YBa}_{2}\hbox {Cu}_{4}\hbox {O}_{8}\) and \(\hbox {Bi}_{2}\hbox {Sr}_{2}\hbox {CaCu}_{2}\hbox {O}_{8}\). We demonstrated that, the upper critical magnetic field along the ab-plane is greater than along the crystallographic c-axis for both \(\hbox {YBa}_{2}\hbox {Cu}_{4}\hbox {O}_{8}\) and \(\hbox {Bi}_{2}\hbox {Sr}_{2}\hbox {CaCu}_{2}\hbox {O}_{8}\). We have also plotted the phase diagrams for the temperature dependence of lower critical magnetic fields parallel, \(H^{\Vert c}_{C1}(T)\) and perpendicular, \(H_{C1}^{\perp c}(T)\) to the crystallographic c-axis for the two copper-based superconductors. Moreover, the phase diagrams for the temperature dependence of GL coherence lengths in the ab-plane, \(\xi ^{ab}_{GL}(T)\) and along the c-axis, \(\xi _{GL}^{c}(T)\) are plotted. Furthermore, we have plotted the phase diagrams for the temperature dependence of GL penetration depths in the ab-plane, \(\lambda ^{ab}_{GL}(T)\) and along the c-axis, \(\lambda _{GL}^{c}(T)\). Finally, the phase diagrams for the GL characteristic parameters, \(\kappa ^{c}_{GL}\) and \(\kappa ^{ab}_{GL}\) are plotted and the large values indicate that, \(\hbox {YBa}_{2}\hbox {Cu}_{4}\hbox {O}_{8}\) and \(\hbox {Bi}_{2}\hbox {Sr}_{2}\hbox {CaCu}_{2}\hbox {O}_{8}\) are extreme type-II copper-based superconductors. The results we obtained in this research work are in broad agreement with previous experimental findings.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: No Data associated in the manuscript.]

References

  1. J.G. Bednorz, K.A. Müller, Phys. B 64(2), 189 (1986)

    Google Scholar 

  2. M.K. Wu et al., Phys. Rev. Lett. 58(9), 908 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  3. A.I. Golovashkin et al., Physica C 185, 1859 (1991)

    Article  ADS  Google Scholar 

  4. P.H. Hor, L. Gao, R.L. Meng, Z.J. Huang, Y.Q. Wang, K. Forster, J. Vassilious, C.W. Chu, M.K. Wu, J.R. Ashburn, C.J. Torng, Phys. Rev. Lett. 58, 911 (1987)

    Article  ADS  Google Scholar 

  5. H. Maeda, Y. Tanaka, M. Fukutumi, T. Asano, Jpn. J. Appl. Phys. 27(2), L209 (1988)

    Article  ADS  Google Scholar 

  6. L. Gao et al., Physica C (Amsterdam, Netherland) 213(3), 261 (1993)

    Article  ADS  Google Scholar 

  7. L. Gao et al., Phys. Rev. B 50(6), 4260 (1994)

    Article  ADS  Google Scholar 

  8. F. Hunte et al., Nature 453, 903 (2008)

    Article  ADS  Google Scholar 

  9. A.A. Abrikosov, Phys. JETP 5, 1174 (1957)

    Google Scholar 

  10. H.S. Lee et al., Phys. Rev. B 80, 144512 (2009)

    Article  ADS  Google Scholar 

  11. G. Fuchs et al., Phys. Rev. Lett. 101, 237003 (2008)

    Article  ADS  Google Scholar 

  12. V.L. Ginzburg, L.D. Landau, Sov. J. Exp. Theor. Phys. 20, 1064 (1950)

  13. T. Kidanemariam, G. Kahsay, Adv. Condens. Matter Phys. 2016, 5470429 (2016)

    Article  Google Scholar 

  14. P. Udomsamuthirun, A. Changjan, C. Kumvongsa, S. Yoksan, Physica C (Amsterdam, Netherland) 434, 62 (2006)

  15. S. Weyeneth, T. Schneider, Z. Bukowski, J. Karpinski, H. Keller, J. Phys. 20, 345210 (2008)

    Google Scholar 

  16. S. Weyeneth, T. Schneider, Phys. Rev. B 79, 214504 (2009)

    Article  ADS  Google Scholar 

  17. Y. Simsek et al., Supercond. Sci. Technol. 31(1), 015009 (2017)

    Article  ADS  Google Scholar 

  18. S. Kittaka, T. Nakamura, Y. Aono, S. Yonezawa, K. Ishida, Y. Maeno, Phys. Rev. B 80, 174514 (2009)

    Article  ADS  Google Scholar 

  19. A. Changjan, P. Udomsamuthirun, Physica C (Amsterdam, Netherland) 471, 23 (2011)

    Article  ADS  Google Scholar 

  20. C.J. Gorter, H.B.G. Casimir, Physica 1, 306 (1934)

    Article  ADS  Google Scholar 

  21. S. Weyeneth et al., J. Supercond. Novel Magn. 22, 347 (2009)

    Article  Google Scholar 

  22. G. Grissonnanche et al., Nat. Commun. 5, 3280 (2014)

    Article  ADS  Google Scholar 

Download references

Funding

This research received no funding.

Author information

Authors and Affiliations

Authors

Contributions

T.K. developed the title of the manuscript and carried out the computational works. Both T.K. and G.K. participated in analyzing the results and writing of the manuscript. T.D. participated in editing and verifying the manuscript. All the authors have contributed equally to the analytical and numerical calculations contained in the present manuscript.

Corresponding author

Correspondence to Tsadik Kidanemariam.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kidanemariam, T., Kahsay, G. & Desta, T. Investigation of anisotropic upper critical magnetic field in two-band model for the copper-based superconductors \(\mathbf {YBa_{2}Cu_{4}O_{8}}\) and \(\mathbf {Bi_{2}Sr_{2}CaCu_{2}O_{8}}\). Eur. Phys. J. B 96, 136 (2023). https://doi.org/10.1140/epjb/s10051-023-00605-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00605-z

Navigation