Skip to main content
Log in

Temperature effects on the dynamics of oppositely charged bipolarons scattering in conjugated polymers

  • Regular Article – Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Within a tight-binding electron–phonon interaction model modified to include temperature effects, the dynamics of two oppositely charged bipolarons scattering in conjugated polymers are investigated using a nonadiabatic evolution method. In this paper, the temperature effects are introduced by the Langevin equation of motion. In order to further understand the photoelectric conversion mechanism in organic light emitting devices, the yields of the luminescent products are studied. It is found that temperature should promote the formation of luminescent element excitations under relatively weak and strong electric fields. In addition, temperature effects can affect the time of bipolarons recombination. With the increase in temperature, the time of bipolarons recombination increases. The results can provide some research ideas for designing organic light-emitting devices with high electroluminescence efficiency.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availibility Statement

The manuscript has associated data in a data repository. [Authors’ comment: Data and source code associated in the manuscript are available upon request.]

References

  1. M.A. Baldo, D.F. O’brien, M.E. Thompson, S.R. Forrest, Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys. Rev. B 60, 14422–14428 (1999)

    Article  ADS  Google Scholar 

  2. M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z.V. Vardeny, Formation cross-sections of singlet and triplet excitons in \(\pi \)-conjugated polymers. Nature 409, 494–7 (2001)

    Article  ADS  Google Scholar 

  3. J.S. Kim, P. Ho, N.C. Greenham, R.H. Friend, Electroluminescence emission pattern of organic light-emitting diodes: implications for device efficiency calculations. J. Appl. Phys. 88, 1073–1081 (2000)

    Article  ADS  Google Scholar 

  4. K.H. Peter, J.S. Kim, Molecular-scale interface engineering for polymer light-emitting diodes. Nature 404, 481–484 (2000)

    Article  ADS  Google Scholar 

  5. Y. Shirota, H. Kageya, Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their application in devices. Chem. Rev. 107, 953–1010 (2007)

    Article  Google Scholar 

  6. M. Wohlgenannt, X.M. Jiang, C. Yang, O.J. Korovyanko, Z.V. Vardeny, Spin-dependent polaron pair recombination in \(\pi \)-conjugated polymers: enhanced singlet exciton densities. Synth. Met. 139, 921–924 (2003)

    Article  Google Scholar 

  7. C. Yong, I.D. Parker, Y. Gang, C. Zhang, A.J. Heeger, Improved quantum efficiency for electroluminescence in semiconducting polymers. Nature 397, 414–417 (1999)

    Article  ADS  Google Scholar 

  8. B. Di, Y. Meng, Y.D. Wang, X.J. Liu, Z. An, Electroluminescence enhancement in polymer light-emitting diodes through inelastic scattering of oppositely charged bipolarons. J. Phys. Chem. B 115, 9339–9344 (2011)

    Article  Google Scholar 

  9. B. Di, Y.D. Wang, Y.L. Zhang, Z. An, The effect of interface hopping on inelastic scattering of oppositely charged polarons in polymers. Chin. Phys. B 22, 067103–6 (2013)

    Article  ADS  Google Scholar 

  10. L.A. Ribeiro, W.F. Da Cunha, P.H. De Oliveira Neto, R. Gargano, G.M. e Silva, Dynamical study of impurity effects on bipolaron-bipolaron and bipolaron-polaron scattering in conjugated polymers. J. Phys. Chem. B 117, 11801–11811 (2013)

    Article  Google Scholar 

  11. J.V. Nguepnang, A.K. Teguimfouet, C. Kenfack-Sadem, A. Kenfack-Jiotsa, Polaron dynamic and decoherence in transition metal dichalcogenides under electric field. Indian J. Phys. 96, 2001–2010 (2022)

    Article  ADS  Google Scholar 

  12. B. Di, Y.D. Wang, Y.L. Zhang, The effect of interchain coupling on inelastic scattering of oppositely charged polarons. Acta Phys. Sin. 62, 107202–7 (2013)

    Article  Google Scholar 

  13. F. Genoud, M. Guglielmi, M. Nechtschein, E. Genies, M. Salmon, ESR study of electrochemical doping in the conducting polymer polypyrrole. Chin. Phys. Lett. 55, 118–121 (1985)

    Article  Google Scholar 

  14. Y. Shimoi, S. Abe, Competition between polarons and bipolarons in nondegenerate conjugated polymers. Europhys. Lett. 50, 14781–14784 (1994)

    Google Scholar 

  15. B. Di, Y. Meng, Y.D. Wang, X.J. Liu, Z. An, Formation and evolution dynamics of bipolarons in conjugated polymers. J. Phys. Chem. B 115, 964–971 (2011)

    Article  Google Scholar 

  16. M.F.C. Fobasso, C. Kenfack-Sadem, E. Baloitcha, A.J. Fotué, L.C. Fai, Lifetime and dynamics of polaron and bipolaron in graphene nanoribbon under laser. Eur. Phys. J. Plus 135, 471-1-18 (2022)

    Google Scholar 

  17. D. Tsokkou, P. Cavassin, G. Gonzague Rebetez, N. Banerji, Bipolarons rule the short-range terahertz conductivity in electrochemically doped P3HT. Mater. Horiz. 9, 482–491 (2022)

    Article  Google Scholar 

  18. Z. Sun, Y. Li, S.J. Xie, Z. An, D.S. Liu, Scattering processes between bipolaron and exciton in conjugated polymers. Phys. Rev. B 79, 201310–4 (2009)

    Article  ADS  Google Scholar 

  19. Z. Sun, Y. Li, K. Gao, D.S. Liu, Z. An, S.J. Xie, Dynamical study of polaron-bipolaron scattering in conjugated polymers. Org. Electron. 11, 279–284 (2010)

    Article  Google Scholar 

  20. Z. Sun, S. Stafström, Bipolaron recombination in conjugated polymers. J. Chem. Phys. 135, 074902–7 (2011)

    Article  ADS  Google Scholar 

  21. L.F. Roncaratti, R. Gargano, G.M. e Silva, Theoretical temperature dependence of the charge-carrier mobility in semiconducting polymers. J. Phys. Chem. A 113, 14591–14594 (2009)

    Article  Google Scholar 

  22. Z. Qu, D.W. Kang, H. Jiang, S.J. Xie, Temperature effect on polaron dynamics in DNA molecule: the role of electron-base interaction. Phys. B 405, S123–S125 (2010)

    Article  ADS  Google Scholar 

  23. P.H. de Oliveira Neto, W.F. da Cunha, G.M. e Silva, Charge carrier untrapping by temperature effects in conjugated polymers. Europhys. Lett. 88, 67006-p6 (2009)

    Article  Google Scholar 

  24. Z. Qu, Y. Li, W. Liu, D.W. Kang, S.J. Xie, Effect of temperature on polaron dynamics in poly-DNA. Phys. Lett. A 373, 2189–2192 (2009)

    Article  ADS  Google Scholar 

  25. W.F. da Cunha, P.H. de Oliveira Neto, R. Gargano, G.M. e Silva, Temperature effects on polaron stability in polyacetylene. Int. J. Quantum Chem. 108, 2448–2453 (2008)

    Article  ADS  Google Scholar 

  26. Y.L. Zhang, X.J. Liu, An Z, Temperature dependence of polaron stability in conjugated polymers. Europhys. Lett. 111, 17009-p6 (2015)

    Article  ADS  Google Scholar 

  27. L.A. Ribeiro, W.F. da Cunha, P.H. de Oliveria Neto, R. Gargano, G.M. e Silva, Effects of temperature and electric field induced phase transitions on the dynamics of polarons and bipolarons. New J. Chem. 37, 2829–2836 (2013)

    Article  Google Scholar 

  28. L.A. Ribeiro, W.F. da Cunha, G.M. e Silva, Temperature effects on the scattering of polarons and bipolarons in organic conductors. J. Phys. Chem. A 118, 6272–6277 (2014)

    Article  Google Scholar 

  29. W.F. da Cunha, L.A. Ribeiro, R. Gargano, G.M. e Silva, Critical temperature and products of intrachain polaron recombination in conjugated polymers. Phys. Chem. Chem. Phys. 16, 17072–17080 (2014)

    Article  Google Scholar 

  30. L.A. Ribeiro, W.F. da Cunha, A.L. de Almeida Fonseca, R. Gargano, G.M. e Silva, Temperature effects on intrachain recombination of bipolarons in conjugated polymers. Chem. Phys. Lett. 614, 151–155 (2014)

    Article  ADS  Google Scholar 

  31. Y. Meng, G.J. Guo, Y.D. Wang, Y.F. Liu, Z. An, The effects of temperature on the formation and stability of bipolarons in conjugated polymers. Eur. Phys. J. B 90, 1–7 (2017)

    Article  Google Scholar 

  32. W.P. Su, J.R. Schrieffer, A.J. Heeger, Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979)

    Article  ADS  Google Scholar 

  33. Y.L. Zhang, X.J. Liu, Z. An, Temperature effects on the dynamics of photoexcitations in conjugated polymers. J. Phys. Chem. C 118, 2963–2969 (2014)

    Article  Google Scholar 

  34. Z. Ivić, S. Zeković, D. Kostić, Finite-temperature large acoustic polaron dynamics in quasi-one-dimensional molecular crystals. Phys. Rev. E 65, 021911–5 (2002)

    Article  ADS  Google Scholar 

  35. N. Flytzanis, Z. Ivić, B.A. Malomed, Radiation emission by a polaron in a molecular chain. J. Phys.: Condens. Matter 7, 7843–7850 (1995)

    ADS  Google Scholar 

  36. N. Flytzanis, Z. Ivić, B.A. Malomed, Diffusion of randomly driven solitons in molecular chains. Europhys. Lett. 30, 267–272 (1995)

    Article  ADS  Google Scholar 

  37. L.A. Ribeiro, W.F. da Cunha, G.M. e Silva, Singlet-singlet exciton recombination: theoretical insight into the influence of high density regime of excitons in conjugated polymers. J. Phys. Chem. B 118, 5250–5257 (2014)

    Article  Google Scholar 

  38. L.A. Ribeiro, P.H.O. Neto, W.F. da Cunha, L.F. Roncaratti, R. Gargano, D.A. da Silva Filho, G.M. e Silva, Exciton dissociation and charge carrier recombination processes in organic semiconductors. J. Chem. Phys. 135, 224901–224906 (2011)

    Article  ADS  Google Scholar 

  39. L.A. Ribeiro, W.F. da Cunha, P.H.O. Neto, R. Gargano, G.M. e Silva, Impurity effects and temperature influence on the exciton dissociation dynamics in conjugated polymers. Chem. Phys. Lett. 580, 108–114 (2013)

    Article  ADS  Google Scholar 

  40. Z. An, C.Q. Wu, X. Sun, Dynamics of photogenerated polarons in conjugated polymers. Phys. Rev. Lett. 93, 216407–4 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Project supported by Science and technology Project of Xingtai City (Grant No. 2021ZZ029),the Natural Science Fund of Hebei Province of China (Grant No. A2016205271).

Author information

Authors and Affiliations

Authors

Contributions

JJL, YM, YLZ and BD formulated the idea of the work and took part in the discussion. JJL, YPL and YLZ developed part of the code and performed numerical computations. All authors have contributed to the interpretation of the numerical results and have jointly written the manuscript.

Corresponding authors

Correspondence to Y. L. Zhang or B. Di.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J.J., Meng, Y., Luo, Y.P. et al. Temperature effects on the dynamics of oppositely charged bipolarons scattering in conjugated polymers. Eur. Phys. J. B 96, 141 (2023). https://doi.org/10.1140/epjb/s10051-023-00604-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00604-0

Navigation