Skip to main content

Advertisement

Log in

Computational analysis of CdS monolayer nanosheets for gas-sensing applications

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The pollution of the atmospheric environment has significantly increased due to the rapid growth of population and industrial development. To prevent environmental disasters caused by such deterioration, it is imperative to control and monitor such pollutants. This study investigates the structural, electronic, and optical characteristics of the CdS monolayer nanosheets, and evaluates their gas adsorption behavior for various gas molecules (CO2, SO2, H2S, CO, and SO) using DFT calculations. SO2, H2S, and CO are found to show weak adsorption suggesting the physisorption behavior, whereas CO2 and SO adsorption systems are found to undergo chemical adsorption on the CdS surface, suggesting it as a promising sensing material for the latter gasses. The electronic structure and geometrical positions of the gas molecules on monolayer CdS surface have been analyzed, revealing a significant alteration in the band gap of CdS upon the the adsorption of gas molecules. We also investigated the optical properties of the monolayer CdS in the presence of the gasses, indicating that the real and imaginary components of the dielectric function are crucial for sensing applications, and changes in the absorption spectrum of the CdS monolayer upon adsorption of the different gasses can be attributed to the specific electronic and chemical properties of each gas and their interaction with the CdS surface.

Graphical Abstract

The analysis of the electron localization function (ELF) and charge density differences (CDD) is shown here for CO/CdS and SO/CdS systems. The high degree of ELF and CDD indicates chemisorption (SO/CdS system), while a low degree (or negligible) of ELF and CDD suggests physisorption (CO/CdS system)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors' comment: The authors confirm that the data supporting the findings of this study are available within the article.]

References

  1. M.V. Nikolic, V. Milovanovic, Z.Z. Vasiljevic, Z. Stamenkovic, Semiconductor gas sensors: materials, technology, design, and application. Sensors (Switzerland) 20, 1–31 (2020). https://doi.org/10.3390/s20226694

    Article  Google Scholar 

  2. T. Alaa Hussein, N.M. Shiltagh, W. Kream Alaarage, R.R. Abbas, R.A. Jawad, A.H. Abo Nasria, Electronic and optical properties of the BN bilayer as gas sensor for CO2, SO2, and NO2 molecules: a DFT study. Results Chem 5, 100978 (2023). https://doi.org/10.1016/j.rechem.2023.100978

    Article  Google Scholar 

  3. A. Abojassim, Z. Gateaa, A. Abo Nasria, Adsorption of gas molecules on (BN) monolayer as potential SO, SO2 NO, and NO2 gases sensor: a DFT study. J. Chem. 65, 1–11 (2021). https://doi.org/10.21608/ejchem.2021.92587.4380

    Article  Google Scholar 

  4. W. Kream Alaarage, A.H. Abo Nasria, A.H. Omran Alkhayatt, A DFT investigation of an InP bilayer: a potential gas sensor with promising adsorption and optical response. Comput. Theor. Chem. 1227, 114223 (2023). https://doi.org/10.1016/j.comptc.2023.114223

    Article  Google Scholar 

  5. P.T. Moseley, Solid state gas sensors. Meas. Sci. Technol. 8, 223–237 (1997). https://doi.org/10.1088/0957-0233/8/3/003

    Article  ADS  Google Scholar 

  6. T.A. Hussein, W.K. Alaarage, H.A. Abdulhussein, N. Seriani, A.H. Abo Nasria, Ga-doped AlN monolayer nano-sheets as promising materials for environmental sensing applications. Comput. Theor. Chem. 1223, 114086 (2023). https://doi.org/10.1016/j.comptc.2023.114086

    Article  Google Scholar 

  7. Y. Kang, F. Yu, L. Zhang, W. Wang, L. Chen, Y. Li, Review of ZnO-based nanomaterials in gas sensors. Solid State Ion. 360, 1155 (2021). https://doi.org/10.1016/j.ssi.2020.115544

    Article  Google Scholar 

  8. S. Steinhauer, Gas sensors based on copper oxide nanomaterials: a review. Chemosensors. 9, 1–20 (2021). https://doi.org/10.3390/chemosensors9030051

    Article  Google Scholar 

  9. Y. Masuda, Recent advances in SnO2 nanostructure based gas sensors. Sens. Actuators B Chem. 364, 131876 (2022). https://doi.org/10.1016/j.snb.2022.131876

    Article  Google Scholar 

  10. T.V. Perevalov, I.P. Prosvirin, E.A. Suprun, F. Mehmood, T. Mikolajick, U. Schroeder, V.A. Gritsenko, J. Sci. Adv. Mater. Devices films 6, 1–6 (2021)

    Article  Google Scholar 

  11. S. Elouali, L.G. Bloor, R. Binions, I.P. Parkin, C.J. Carmalt, J.A. Darr, Gas sensing with nano-indium oxides (In2O3) prepared via continuous hydrothermal flow synthesis. Langmuir 28, 1879–1885 (2012). https://doi.org/10.1021/la203565h

    Article  Google Scholar 

  12. Z. Wei, L. Xu, S. Peng, Q. Zhou, Application of WO3 hierarchical structures for the detection of dissolved gases in transformer oil: a mini review. Front. Chem. 8, 6–11 (2020). https://doi.org/10.3389/fchem.2020.00188

    Article  Google Scholar 

  13. T. Lin, X. Lv, S. Li, Q. Wang, The morphologies of the semiconductor oxides and their gas-sensing properties. Sensors (Switzerland) 17, 1–30 (2017). https://doi.org/10.3390/s17122779

    Article  Google Scholar 

  14. R. Woods-Robinson, Y. Han, H. Zhang, T. Ablekim, I. Khan, K.A. Persson, A. Zakutayev, Wide band gap chalcogenide semiconductors. Chem. Rev. 120, 4007–4055 (2020). https://doi.org/10.1021/acs.chemrev.9b00600

    Article  Google Scholar 

  15. G. Volonakis, N. Sakai, H.J. Snaith, F. Giustino, Oxide analogs of halide perovskites and the new semiconductor Ba2AgIO6. J. Phys. Chem. Lett. 10, 1722–1728 (2019). https://doi.org/10.1021/acs.jpclett.9b00193

    Article  Google Scholar 

  16. N.F. Mott, Silicon dioxide and the chalcogenide semiconductors; similarities and differences. Adv. Phys. 26, 363–391 (1977). https://doi.org/10.1080/00018737700101413

    Article  ADS  Google Scholar 

  17. S.V. Dmitriev, I.V. Dementiev, Vitreous chalcogenide semiconductors for gas sensing application. MRS Proc. (2004). https://doi.org/10.1557/PROC-828-A5.8

    Article  Google Scholar 

  18. M. Mitkova, D. Butt, M. Kozicki, H. Barnaby, Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing (Idaho Falls, ID, USA, 2013)

    Book  Google Scholar 

  19. J.S. Jie, W.J. Zhang, Y. Jiang, X.M. Meng, Y.Q. Li, S.T. Lee, Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett. 6, 1887–1892 (2006). https://doi.org/10.1021/nl060867g

    Article  ADS  Google Scholar 

  20. S.T. Navale, A.T. Mane, M.A. Chougule, N.M. Shinde, J. Kim, V.B. Patil, Highly selective and sensitive CdS thin film sensors for detection of NO2 gas. RSC Adv. 4, 44547–44554 (2014). https://doi.org/10.1039/c4ra06531j

    Article  ADS  Google Scholar 

  21. H. Xia, J. Peng, K. Liu, C. Li, Y. Fang, Preparation and gas sensing properties of novel CdS-supramolecular organogel hybrid films. J. Phys. D Appl. Phys. 41, 105405 (2008). https://doi.org/10.1088/0022-3727/41/10/105405

    Article  ADS  Google Scholar 

  22. L. Yadava, R. Verma, R. Dwivedi, Sensing properties of CdS-doped tin oxide thick film gas sensor. Sens. Actuators B Chem. 144, 37–42 (2010). https://doi.org/10.1016/j.snb.2009.10.013

    Article  Google Scholar 

  23. D.S. Dhawale, D.P. Dubal, V.S. Jamadade, R.R. Salunkhe, S.S. Joshi, C.D. Lokhande, Room temperature LPG sensor based on n-CdS/p-polyaniline heterojunction. Sens. Actuators B Chem. 145, 205–210 (2010). https://doi.org/10.1016/j.snb.2009.11.063

    Article  Google Scholar 

  24. X. Fu, J. Liu, Y. Wan, X. Zhang, F. Meng, J. Liu, Preparation of a leaf-like CdS micro-/nanostructure and its enhanced gas-sensing properties for detecting volatile organic compounds. J. Mater. Chem. 22, 17782–17791 (2012). https://doi.org/10.1039/c2jm33352j

    Article  Google Scholar 

  25. B.T. Raut, P.R. Godse, S.G. Pawar, M.A. Chougule, V.B. Patil, Development of nanostructured CdS sensor for H2S recognition: structural and physical characterization. J. Mater. Sci. Mater. Electron. 23, 956–963 (2012). https://doi.org/10.1007/s10854-011-0527-2

    Article  Google Scholar 

  26. T. Arai, T. Yoshida, T. Ogawa, Photoacoustic and luminescence spectra of CdS fine particles. Jpn. J. Appl. Phys. 26, 396–404 (1987). https://doi.org/10.1143/JJAP.26.396

    Article  ADS  Google Scholar 

  27. B. Su, K.L. Choy, Microstructure and properties of the CdS thin films prepared by electrostatic spray assisted vapour deposition (ESAVD) method. Thin Solid Films 359, 160–164 (2000). https://doi.org/10.1016/S0040-6090(99)00733-6

    Article  ADS  Google Scholar 

  28. H.H. Afify, I.K. Battisha, Oxygen interaction with CdS based gas sensors by varying different preparation parameters. J. Mater. Sci. Mater. Electron. 1, 373–377 (2000)

    Article  Google Scholar 

  29. R. Demir, S. Okur, M. Şeker, Electrical characterization of CdS nanoparticles for humidity sensing applications. Ind. Eng. Chem. Res. 51, 3309–3313 (2012). https://doi.org/10.1021/ie201509a

    Article  Google Scholar 

  30. Y. Cao, L. Guo, M. Dan, D.E. Doronkin, C. Han, Z. Rao, Y. Liu, J. Meng, Z. Huang, K. Zheng, P. Chen, F. Dong, Y. Zhou, Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction. Nat. Commun. (2021). https://doi.org/10.1038/s41467-021-21925-7

    Article  Google Scholar 

  31. Y. Li, D. Bahamon, M. Sinnokrot, L.F. Vega, Insights into the mechanisms of H2S adsorption and dissociation on CdS surfaces by DFT-D3 calculations. Int. J. Hydrogen Energy 48(26), 9700–9712 (2022)

    Article  Google Scholar 

  32. Y. Li, Computational screening of transition metal-doped CdS for photocatalytic hydrogen production. npj Comput. Mater. (2022). https://doi.org/10.1038/s41524-022-00922-4

    Article  Google Scholar 

  33. M. Li, H. Zhu, G. Wei, A. He, Y. Liu, DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated SnO2 (110) surface. RSC Adv. 9(61), 35862–35871 (2019). https://doi.org/10.1039/c9ra02958c

    Article  ADS  Google Scholar 

  34. Z. Zhou, F. Han, O.V. Prezhdo, Understanding divergent behaviors in the photocatalytic hydrogen evolution reaction on CdS and ZnS: a DFT based study. Phys. Chem. Chem. Phys. 18(25), 16862–16869 (2016). https://doi.org/10.1039/c6cp02599d

    Article  Google Scholar 

  35. C.M. Marian, A. Heil, M. Kleinschmidt, The DFT/MRCI method. Wiley Interdiscip. Rev. Comput. Mol. Sci. (2019). https://doi.org/10.1002/wcms.1394

    Article  Google Scholar 

  36. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  37. N. Mardirossian, M. Head-Gordon, ωb97X-V: a 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. Phys. Chem. Chem. Phys. 16, 9904–9924 (2014). https://doi.org/10.1039/c3cp54374a

    Article  Google Scholar 

  38. M.M. Obeid, H.R. Jappor, S.J. Edrees, M.M. Shukur, R. Khenata, Y. Mogulkoc, The electronic, half-metallic, and magnetic properties of Ca1–xCrxS ternary alloys: insights from the first-principle calculations. J. Mol. Graph. Model. 89, 22–32 (2019). https://doi.org/10.1016/j.jmgm.2019.02.004

    Article  Google Scholar 

  39. M. Ernzerhof, G.E. Scuseria, Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110, 5029–5036 (1999). https://doi.org/10.1063/1.478401

    Article  ADS  Google Scholar 

  40. S. Chang, J. Li, Q. Yue, Z. Shao, Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett. 8, 1–7 (2013)

    Google Scholar 

  41. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). https://doi.org/10.1002/jcc.20495

    Article  Google Scholar 

  42. T. Chen, X. Meng, R. Jiang, J. Liang, Q. Yang, Q. Tan, C. Sun, X. Zhang, S. Ren, Electronic structure and optical properties of graphene/stanene heterobilayer. Phys. Chem. Chem. Phys. 18, 16302–16309 (2016). https://doi.org/10.1039/C6CP02424F

    Article  Google Scholar 

  43. A. Hemeryck, A. Motta, C. Lacaze-Dufaure, D. Costa, P. Marcus, DFT-D study of adsorption of diaminoethane and propylamine molecules on anatase (101) TiO2 surface. Appl. Surf. Sci. 426, 107–115 (2017). https://doi.org/10.1016/j.apsusc.2017.07.161

    Article  ADS  Google Scholar 

  44. P. Pyykkö, M. Atsumi, Molecular single-bond covalent radii for elements 1–118. Chem. A Eur. J. 15, 186–197 (2009). https://doi.org/10.1002/chem.200800987

    Article  Google Scholar 

  45. X.-P. Yang, Q. Chen, J.-K. Meng, R.-S. Jiang, T.-L. Liang, Q.-H. Tan, C.-J. Cai, M. Sun, X. Yang, D.-G. Ren, First-principles study of sulfur dioxide sensor based on phosphorenes. IEEE Electron Device Lett. 37, 660–662 (2016). https://doi.org/10.1109/LED.2016.2543243

    Article  ADS  Google Scholar 

  46. P.J.D. Segall, M.D. Lindan, C.J. Probert, M.J. Pickard, M.C. Hasnip, P.J. Clark, S.J. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717–2744 (2002). https://doi.org/10.1088/0953-8984/14/11/301

    Article  ADS  Google Scholar 

  47. X. Obeid, M.M. Shukur, M.M. Edrees, S.J. Khenata, R. Ghebouli, M.A. Khandy, S.A. Bouhemadou, A. Jappor, H.R. Wang, Electronic band structure, thermodynamics and optical characteristics of BeO1−xAx (A = S, Se, Te) alloys: insights from ab initio study. Chem. Phys. 526, 110414 (2019). https://doi.org/10.1016/j.chemphys.2019.110414

    Article  Google Scholar 

  48. X. Sun, X. Yang, Q. Meng, R. Tan, C. Liang, Q. Jiang, J. Ye, H. Chen, Adsorption of gas molecules on graphene-like InN monolayer: a first-principle study. Appl. Surf. Sci. 404, 291–299 (2017). https://doi.org/10.1016/j.apsusc.2017.01.264

    Article  ADS  Google Scholar 

  49. A.R. Villegas, C.E.P. Rocha, Elucidating the optical properties of novel heterolayered materials based on MoTe2–InN for photovoltaic applications. J. Phys. Chem. C 119, 11886–11895 (2015). https://doi.org/10.1021/jp5122596

    Article  Google Scholar 

  50. H.R. Jappor, Z.A. Saleh, M.A. Abdulsattar, Simulation of electronic structure of aluminum phosphide nanocrystals using ab initio large unit cell method. Adv. Mater. Sci. Eng. 2012, 1–6 (2012). https://doi.org/10.1155/2012/180679

    Article  Google Scholar 

  51. A.H.A. Nasriya, Electronic properties calculation of CO and NO adsorbed on BN nanolayer, using density function theory DFT. J. Eng. Appl. Sci. 13, 89–96 (2018)

    Google Scholar 

  52. J.A. Shlaka, A.H. Abo Nasria, Density functional theory study on the adsorption of AsH3 gas molecule with monolayer (AlN)21 (including pristine, C, B doped and defective aluminium nitride sheet). IOP Conf. Ser. Mater. Sci. Eng. 928, 072082 (2020). https://doi.org/10.1088/1757-899X/928/7/072082

    Article  Google Scholar 

  53. A.H.A. Nasriya, DFT study of COCL2 adsorption on pristine fullerence and doped fullerene. J. Eng. Appl. Sci. 13, 7507–7510 (2018)

    Google Scholar 

  54. H. Tributsch, Solar energy-assisted electrochemical splitting of water. Some energetical, kinetical and catalytical considerations verified on MoS2 layer crystal surfaces. Zeitschr. Naturforsch. A 32, 972–985 (1977). https://doi.org/10.1515/zna-1977-0911

    Article  ADS  Google Scholar 

  55. A.N. Pikhtin, D.A. Yaskov, Infrared absorption in gallium phosphide. Phys. Stat. Solidi 34, 815–824 (1969). https://doi.org/10.1002/pssb.19690340244

    Article  ADS  Google Scholar 

  56. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B Condens. Matter Mater. Phys. 73, 45112 (2006)

    Article  ADS  Google Scholar 

  57. X. Sun, Y. Guo, Y. Zhao, S. Liu, H. Li, Gas adsorption investigation on sige monolayer: A first-principle calculation. Sensors (Switzerland) 20, 2879 (2020). https://doi.org/10.3390/s20102879

    Article  ADS  Google Scholar 

  58. C. Yongqing, K. Qingqing, Z. Gang, Z. Yong-Wei, Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene. J. Phys. Chem. C 119, 3102–3110 (2015). https://doi.org/10.1021/jp510863p

    Article  Google Scholar 

  59. F.M. Berdiyorov, G.R. Neek-Amal, M. Hussein, I.A. Madjet, M.E. Peeters, Large CO2 uptake on a monolayer of CaO. J. Mater. Chem. A. 5, 2110–2114 (2017). https://doi.org/10.1039/c6ta08810d

    Article  Google Scholar 

  60. P. Meng, R.-S. Cai, M. Jiang, J.-K. Liang, Q.-H. Sun, X. Yang, Q. Tan, C.-J. Chen, First principles investigation of small molecules adsorption on antimonene. IEEE Electron Device Lett. 38, 134–137 (2017). https://doi.org/10.1109/LED.2016.2633569

    Article  ADS  Google Scholar 

  61. J. Jin, Y. Li, X. Yang, Single layer of MX 3 (M = Ti, Zr; X = S, Se, Te): a new platform for nano-electronics and optics. Phys. Chem. Chem. Phys. 17, 18665–18669 (2015). https://doi.org/10.1039/C5CP02813B

    Article  Google Scholar 

  62. H.A. Abdulhussein, P. Ferrari, J. Vanbuel, C. Heard, A. Fielicke, P. Lievens, E. Janssens, R.L. Johnston, Altering CO binding on gold cluster cations by Pd-doping. Nanoscale 11, 16130–16141 (2019). https://doi.org/10.1039/C9NR04237G

    Article  Google Scholar 

  63. P. Jensen, M. Spanner, P.R. Bunker, The CO2 molecule is never linear. J. Mol. Struct. 1212, 128087 (2020). https://doi.org/10.1016/j.molstruc.2020.128087

    Article  Google Scholar 

  64. A. Föhlisch, M. Nyberg, J. Hasselström, O. Karis, L.G.M. Pettersson, A. Nilsson, How carbon monoxide adsorbs in different sites. Phys. Rev. Lett. 85, 3309–3312 (2000). https://doi.org/10.1103/PhysRevLett.85.3309

    Article  ADS  Google Scholar 

  65. Y. Andersson, D.C. Langreth, B.I. Lundqvist, van der Waals interactions in density-functional theory. Phys. Rev. Lett. 76, 102–105 (1996). https://doi.org/10.1103/PhysRevLett.76.102

    Article  ADS  Google Scholar 

  66. G.J. Jackson, J. Lüdecke, S.M. Driver, D.P. Woodruff, R.G. Jones, A. Chan, B.C.C. Cowie, The local adsorption structure of SO2 on Ni(111): a normal incidence X-ray standing wavefield determination. Surf. Sci. 389, 223–233 (1997). https://doi.org/10.1016/S0039-6028(97)00416-0

    Article  ADS  Google Scholar 

  67. X. Liu, F. Sun, Z. Qu, J. Gao, S. Wu, The effect of functional groups on the SO2 adsorption on carbon surface I: a new insight into noncovalent interaction between SO2 molecule and acidic oxygen-containing groups. Appl. Surf. Sci. 369, 552–557 (2016). https://doi.org/10.1016/j.apsusc.2015.12.119

    Article  ADS  Google Scholar 

  68. P. Nordlander, C. Holmberg, J. Harris, Physisorption interaction of H2 with simple metals. Surf. Sci. 175, L753–L758 (1986). https://doi.org/10.1016/0039-6028(86)90227-X

    Article  ADS  Google Scholar 

  69. F. Frechard, P. Sautet, Chemisorption of H2 and H2S on the (100) surface of RuS2: an ab initio theoretical study. Surf. Sci. 389, 131–146 (1997). https://doi.org/10.1016/S0039-6028(97)00405-6

    Article  ADS  Google Scholar 

  70. T.-T. Zhang, Q.-L. Tang, M.-Y. Yao, C. Chen, X.-X. Duan, Q. Wang, X. Zhang, M.-L. Zhang, W. Hu, Quantum chemical DFT study of molecular adsorption of H2S on clean and chemically modified Au(1 1 0) surfaces. Appl. Surf. Sci. 542, 148595 (2021). https://doi.org/10.1016/j.apsusc.2020.148595

    Article  Google Scholar 

Download references

Acknowledgements

The authors highly acknowledge the resources and technical support from the University of Kufa and the Ministry of Higher Education and Scientific Research of Iraq. All calculations have been performed on a processor PowerPC G5. The authors thank Dr. Nicola Seriani (the Abdus Salam ICTP, Italy) for the valuable discussion and helpful criticism on the manuscript.

Funding

No funding received.

Author information

Authors and Affiliations

Authors

Contributions

AHAN designed the research project, supervised the work, and revised and edited the manuscript. WKA carried out the calculations and wrote the first draft of the manuscript. HAA validated the findings, administered the project, wrote the introduction, and revised and edited the manuscript. All authors contributed to data interpretation and discussion of the results.

Corresponding authors

Correspondence to Abbas H. Abo Nasria or Heider A. Abdulhussein.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Ethical approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaarage, W.K., Abo Nasria, A.H. & Abdulhussein, H.A. Computational analysis of CdS monolayer nanosheets for gas-sensing applications. Eur. Phys. J. B 96, 134 (2023). https://doi.org/10.1140/epjb/s10051-023-00601-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00601-3

Navigation