Skip to main content
Log in

Thermal reversal at periodic temperatures in the Frenkel–Kontorova nonlinear lattices

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Thermal conduction in a symmetrical system composed of two Frenkel–Kontorova (FK) lattices is investigated numerically. We find thermal conduction resonance and reversal phenomena via using numerical computation. There is a driving frequency value where the heat flux reaches the highest value. In particular, the dynamical parameters of the model, such as the lattice period, coupling coefficient, onsite potential, and so on, control the phenomena. This finding suggests that dynamic parameters are crucial to develop thermal rectifier devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

All data generated or analysed during this study are included in this published article.

References

  1. J. Ren, S. Liu, B. Li, Geometric heat flux for classical thermal transport in interacting open systems. Phys. Rev. Lett. 108(21), 210603 (2012)

    Article  ADS  Google Scholar 

  2. C. Chen, R. Chen, L. Nie, C. Wang, Y. Jia, Noise and driving induced brownian heat current in the frenkel–kontorova lattices. Physica A 491, 399–405 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. N. Li, F. Zhan, P. Hänggi, B. Li, Shuttling heat across one-dimensional homogenous nonlinear lattices with a brownian heat motor. Phys. Rev. E 80(1), 011125 (2009)

  4. S. Zhang, J. Ren, B. Li et al., Multiresonance of energy transport and absence of heat pump in a force-driven lattice. Phys. Rev. E 84(3), 031122 (2011)

    Article  ADS  Google Scholar 

  5. M. Romero-Bastida, Energy transport in harmonically driven segmented frenkel-kontorova lattices. Phys. Rev. E 102(5), 052124 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  6. B.-Q. Ai, D. He, B. Hu et al., Heat conduction in driven frenkel–kontorova lattices: thermal pumping and resonance. Phys. Rev. E 81(3), 031124 (2010)

    Article  ADS  Google Scholar 

  7. Y. Zhang, Z. Yang, X. Zhang, B. Lin, G. Lin, J. Chen, Coulomb-coupled quantum-dot thermal transistors. EPL (Europhys. Lett.) 122(1), 17002 (2018)

    Article  ADS  Google Scholar 

  8. C.W. Chang, D. Okawa, A. Majumdar, A. Zettl, Solid-state thermal rectifier. Science 314(5802), 1121–1124 (2006)

    Article  ADS  Google Scholar 

  9. P.H. Guimaraes, G.T. Landi, M.J. de Oliveira, Thermal rectification in anharmonic chains under an energy-conserving noise. Phys. Rev. E 92(6), 062120 (2015)

    Article  ADS  Google Scholar 

  10. L. Wang, B. Li, Thermal logic gates: computation with phonons. Phys. Rev. Lett. 99(17), 177208 (2007)

    Article  ADS  Google Scholar 

  11. X. Yue, J. Nangong, P. Chen, T. Han, Thermal cloak: theory, experiment and application. Materials 14(24), 7835 (2021)

    Article  ADS  Google Scholar 

  12. K. Lotfy, W. Hassan, A. El-Bary, M.A. Kadry, Response of electromagnetic and thomson effect of semiconductor medium due to laser pulses and thermal memories during photothermal excitation. Results Phys. 16, 102877 (2020)

    Article  Google Scholar 

  13. V. Kubytskyi, S.-A. Biehs, P. Ben-Abdallah, Radiative bistability and thermal memory. Phys. Rev. Lett. 113(7), 074301 (2014)

    Article  ADS  Google Scholar 

  14. J. Shiomi, Nonequilirium molecular dynamics methods for lattice heat conduction calculations, Ann Rev Heat Trans 17

  15. J. Kurchan, Fluctuation theorem for stochastic dynamics. J. Phys. A 31(16), 3719 (1998)

  16. G. Deco, E.T. Rolls, R. Romo, Stochastic dynamics as a principle of brain function. Progress Neurobiol. 88(1), 1–16 (2009)

    Article  Google Scholar 

  17. Z. Qu, G. Hu, A. Garfinkel, J.N. Weiss, Nonlinear and stochastic dynamics in the heart. Phys. Rep. 543(2), 61–162 (2014)

    Article  MathSciNet  Google Scholar 

  18. N. Li, P. Hänggi, B. Li, Ratcheting heat flux against a thermal bias. EPL (Europhys. Lett.) 84(4), 40009 (2008)

    Article  ADS  Google Scholar 

  19. L. Nie, L. Yu, Z. Zheng, C. Shu, Heat conduction of symmetric lattices. Phys. Rev. E 87(6), 062142 (2013)

    Article  ADS  Google Scholar 

  20. X. Zhang, L. Nie, K. Ma, J. Zhang, J. Wu, F. Ye, C. Xiao, Stochastic resonance and thermal reversal phenomenon in the thermal conduction of frenkel-kontorova lattices. Modern Phys Lett B 32(03), 1850017 (2018)

    Article  ADS  Google Scholar 

  21. S.-H. Lee, K. Ladavac, M. Polin, D.G. Grier, Observation of flux reversal in a symmetric optical thermal ratchet. Phys. Rev. Lett. 94(11), 110601 (2005)

    Article  ADS  Google Scholar 

  22. B.-Q. Ai, Y.-F. He, W.-R. Zhong, Transport in periodic potentials induced by fractional gaussian noise. Phys. Rev. E 82(6), 061102 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nature Science Foundation of Yunnan province (Grant No. 202101AT070117).

Funding

This work was supported by the Nature Science Foundation of Yunnan province (Grant No. 202101AT070117).

Author information

Authors and Affiliations

Authors

Contributions

YL carried out the data curation and wrote the original draft. XL carried out the study and collected background information. XZ carried out the conceptualization, methodology and helped in writing this manuscript.

Corresponding author

Correspondence to Xinyu Zhang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, X. & Li, X. Thermal reversal at periodic temperatures in the Frenkel–Kontorova nonlinear lattices. Eur. Phys. J. B 96, 133 (2023). https://doi.org/10.1140/epjb/s10051-023-00600-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00600-4

Navigation