Skip to main content
Log in

The superconducting fluctuation optical conductivity of iron-based superconductors

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the superconducting fluctuation optical conductivity using the time-dependent Ginzburg–Landau Lawrence–Doniach model with thermal noise describing strong thermal fluctuation in iron-based superconductors. The superconducting fluctuation optical conductivity as temperature in the homogeneous phase is calculated. The experimental data of iron-based superconductors FeSe\(_{0.5}\)Te\(_{0.5}\) are fitted using the theoretical result based on the self-consistent Gaussian approximation. Our results show the real and imaginary part of the superconducting fluctuation optical conductivity in a wide region around T\(_{c}\) are well described by the theoretical formula. The superfluid density is also in good agreement with the experimental data in both the superconducting state below T\(_{c}\) and the normal state above T\(_{c}\). It shows that the superfluid density and the imaginary portion of the optical conductivity are still non-zero and considerably large for temperature above Tc, indicating the residual superconductivity above Tc due to strong thermal fluctuations.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: If someone needs the data, the person can kindly contact the corresponding author.]

References

  1. Y. Kamihara et al., J. Am. Chem. Soc. 128, 10012–10013 (2006)

    Article  Google Scholar 

  2. T. Shibauchi, A. Carrington, Y. Matsuda, Annu. Rev. Condens. Matter Phys. 5, 113–135 (2014)

    Article  ADS  Google Scholar 

  3. P.C. Dai, Rev. Mod. Phys. 87, 855 (2015)

    Article  ADS  Google Scholar 

  4. G.R. Stewart, Rev. Mod. Phys. 83, 1589 (2011)

    Article  ADS  Google Scholar 

  5. J. Zhu, Z.S. Wang, Z.Y. Wang, X.Y. Hou, H.Q. Luo, X.Y. Lu, C.H. Li, L. Shan, H.H. Wen, C. Ren, Chin. Phys. Lett. 32, 077401 (2015)

    Article  ADS  Google Scholar 

  6. J. Paglione, R.L. Greene, Nat. Phys. 6, 645–58 (2010)

    Article  Google Scholar 

  7. A. Kreisel, P.J. Hirschfeld, B.M. Andersen, Symmetry 12, 1402 (2020)

    Article  ADS  Google Scholar 

  8. T. Shibauchi, T. Hanaguri, Y. Matsuda, J. Phys. Soc. Jpn. 89, 102002 (2020)

    Article  ADS  Google Scholar 

  9. J.S. Salem-Sugui, A.D. Alvarenga, R.I. Rey, J. Mosqueira, H.Q. Luo, X.Y. Lu, Supercond. Sci. Technol. 26, 125019 (2013)

    Article  ADS  Google Scholar 

  10. M. Tinkham, Phys. Rev. 104, 845 (1956)

    Article  ADS  Google Scholar 

  11. B. Shen et al., Chin. Phys. B 26, 077402 (2017)

    Article  ADS  Google Scholar 

  12. Z.P. Feng et al., Sci. Rep. 8, 4039 (2018)

    Article  ADS  Google Scholar 

  13. R.H. Yuan, W.D. Kong, L. Yan, H. Ding, N.L. Wang, Phys. Rev. B 87, 144517 (2013)

    Article  ADS  Google Scholar 

  14. M. Nakajima, K. Yanase, F. Nabeshima, Y. Imai, A. Maeda, S. Tajima, Phys. Rev. B 95, 184502 (2017)

    Article  ADS  Google Scholar 

  15. K. Isoyama et al., Commun. Phys. 4, 160 (2021)

    Article  Google Scholar 

  16. L. Fanfarillo, L. Benfatto, S. Caprara, C. Castellani, M. Grilli, Phys. Rev. B 79, 172508 (2009)

    Article  ADS  Google Scholar 

  17. M. Marciani, L. Fanfarillo, C. Castellani, L. Benfatto, Phys. Rev. B 88, 214508 (2013)

    Article  ADS  Google Scholar 

  18. V.G. Kogan, J. Schmalian, Phys. Rev. B 83, 054515 (2011)

    Article  ADS  Google Scholar 

  19. A. Larkin, A. Varlamov, Theory of Fluctuations in Superconductors (Clarendon Press, Oxford, 2005)

    Book  MATH  Google Scholar 

  20. S. Ullah, A.T. Dorsey, Phys. Rev. B 44, 262 (1991)

    Article  ADS  Google Scholar 

  21. B.D. Tinh, B. Rosenstein, Phys. Rev. B 79, 024518 (2009)

    Article  ADS  Google Scholar 

  22. P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977)

  23. B.D. Tinh, D.P. Li, B. Rosenstein, Phys. Rev. B 81, 224521 (2010)

    Article  ADS  Google Scholar 

  24. Y. Lin et al., Phys. Rev. Res. 4, L022009 (2022)

  25. M. Putti et al., Supercond. Sci. Technol. 23, 034003 (2010)

    Article  ADS  Google Scholar 

  26. A.K. Yadav, V.K. Kushwaha, C.V. Tomy, AIP Conf. Proc. 1665, 130023 (2015)

  27. R.I. Rey, A. Ramos-Alvarez, C. Carballeira, J. Mosqueira, F. Vidal, J.S. Salem-Sugui, A.D. Alvarenga, R. Zhang, H. Luo, Supercond. Sci. Technol. 27, 075001 (2014)

    Article  ADS  Google Scholar 

  28. X.J. Jiang, D.P. Li, B. Rosenstein, Phys. Rev. B 89, 064507 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

AcknowledgementsL. H. Nguyen is thankful to Van Lang University.

Author information

Authors and Affiliations

Authors

Contributions

LHN and BDT developed the theoretical formalism, performed the analytic calculations and LMT performed the numerical simulations. All authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Bui Duc Tinh.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (eps 0 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, L.H., Thu, L.M. & Tinh, B.D. The superconducting fluctuation optical conductivity of iron-based superconductors. Eur. Phys. J. B 96, 117 (2023). https://doi.org/10.1140/epjb/s10051-023-00589-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00589-w

Navigation