Skip to main content

Advertisement

Log in

The temperature–frequency dependence of conductive random RC networks modelling heterogeneous/composite materials

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the temperature’s effect on the dielectric response of 2D random RC networks (RRCNs) modelling heterogeneous/composite materials. We presented a comparative analysis for the conductivity behaviour using the modified effective medium approximation (EMA) and Franck and Lobb (FL) algorithm. We showed that the Summerfield frequency, the characteristic frequency \(\omega _{c}\) of the conductivity and the loss frequency \(\omega _{\max }\), all followed an Arrhenius dependence; they could be used as scaling frequencies. Using the loss frequency \(\omega _{\max }\) for different temperatures, we could represent each dielectric property in a master curve form. This latter exhibited a behaviour related to the time–temperature superposition principle (TTSP). We showed that the DC conductivity and \(\omega _{\max }\) exhibited the Barton–Nakajima–Namikawa (BNN) relationship \(\sigma '_{dc}=a\varDelta \varepsilon '\omega _{\max }\) for which \(a\sim 1\) as found in the literature, where \(\varDelta \varepsilon '\) is the dielectric loss strength. In addition, we showed that for capacitors’ proportion \(p=0.40\), random RC networks preserved their universal power-law (UPL) behaviour when the temperature was considered with a slight difference in the exponent value differing from the capacitors proportion. We found that the normalized conductivity and complex permittivity both scaled as \(\sigma '/\sigma _{dc}\propto (\omega /\omega _{\max })^{n}\) and \(\varepsilon /\varepsilon _{s}\propto (\omega /\omega _{\max })^{n-1}\), respectively, reflecting the universal dielectric response (UDR).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data are available from the corresponding author upon a reasonable request.]

References

  1. A.K. Jonscher, Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  2. M. Aouaichia, N. McCullen, C.R. Bowen, D.P. Almond, C. Budd, R. Bouamrane, Eur. Phys. J. B 90, 39 (2017)

    Article  ADS  Google Scholar 

  3. D.P. Almond, C.R. Bowen, Phys. Rev. Lett. 92(15), 157601 (2004)

    Article  ADS  Google Scholar 

  4. R.F. Hamou, J.R. Macdonald, E. Tuncer, J. Phys. Condens. Matter 21, 025904 (2009)

    Article  ADS  Google Scholar 

  5. S. Jankowski, J. Am. Ceram. Soc. 71(4), 176 (1988)

    Article  Google Scholar 

  6. C.R. Bowen, D.P. Almond, Mater. Sci. Technol. 22, 719 (2006)

    Article  ADS  Google Scholar 

  7. B.R.M.D.I.M. Lange, K. Funke, Phys. Rev. B 56(21), 13619 (1997)

    Article  ADS  Google Scholar 

  8. H. Jain, S. Krishnaswami, Solid State Ion. 105, 129 (1998)

    Article  Google Scholar 

  9. B. Roling, Solid State Ion. 105, 185 (1998)

    Article  Google Scholar 

  10. K..M.. J, J. Phys. D Appl. Phys. 34, 2699 (2001)

    Article  ADS  Google Scholar 

  11. K.M. J, J. Phys. D Appl. Phys. 35(10), 1068 (2002)

    Article  ADS  Google Scholar 

  12. S. Summerfield, Philos. Mag. B 52(1), 9 (1985)

    Article  ADS  Google Scholar 

  13. B. Roling, A. Happe, K. Funke, M.D. Ingram, Phys. Rev. Lett. 78(11), 2160 (1997)

    Article  ADS  Google Scholar 

  14. D.L. Sidebottom, Phys. Rev. Lett. 82(18), 3653 (1999)

    Article  ADS  Google Scholar 

  15. M.M. Kumar, Z.G. Ye, Phys. Rev. B 72, 024104 (2005)

    Article  ADS  Google Scholar 

  16. S. Murugavel, B. Roling, Phys. Rev. Lett. 89(19), 195902 (2002)

    Article  ADS  Google Scholar 

  17. S.D. Baranovskii, H. Cordes, J. Chem. Phys. 111(16), 7546 (1999)

    Article  ADS  Google Scholar 

  18. J.C. Dyre, T.B. Schrøder, Rev. Mod. Phys. 72, 873 (2000)

    Article  ADS  Google Scholar 

  19. A. Benyahia, R. Bouamrane, Eur. Phys. J. B 93, 1 (2020)

    Article  ADS  Google Scholar 

  20. A. Benyahia, R. Bouamrane, Indian J. Phys. 93, 25 (2019)

    Google Scholar 

  21. A. Benyahia, R. Bouamrane, Chin. J. Phys. 71, 589 (2021)

    Article  Google Scholar 

  22. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973)

    Article  ADS  Google Scholar 

  23. N.J. McCullen, D.P. Almond, C.J. Budd, G.W. Hunt, J. Phys. D Appl. Phys. 42, 064001 (2009)

    Article  ADS  Google Scholar 

  24. C.R. Bowen, A.C.E. Dent, D.P. Almond, T.P. Comyn, Ferroelectrics 370, 166 (2008)

    Article  ADS  Google Scholar 

  25. J.M. Luck, Phys. Rev. B 43, 3933 (1991)

    Article  ADS  Google Scholar 

  26. T. Jonckheere, J.M. Luck, J. Phys. A Math. Gen. 31, 3687 (1998)

    Article  ADS  Google Scholar 

  27. D.P. Almond, C.J. Budd, M.A. Freitag, G.W. McCullen, N.J. Hunt, N.D. Smith, Phys. A 392, 1004 (2013)

  28. D.J. Franck, C.J. Lobb, Phys. Rev. B 37, 302 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  29. C.J. Lobb, D.J. Franck, Phys. Rev. B 30, 4090 (1984)

  30. R. Bouamrane, D.P. Almond, J. Phys. Condens. Matter 15, 4089 (2003)

    Article  ADS  Google Scholar 

  31. D.P. Almond, C.R. Bowen, D.A.S. Rees, J. Phys. D 39, 1295 (2006)

    Article  Google Scholar 

  32. J.R. Macdonald, J. Non-Cryst. Solids 197, 83 (1996)

    Article  ADS  Google Scholar 

  33. J.C. Dyre, J. Appl. Phys. 64, 2456 (1988)

    Article  ADS  Google Scholar 

  34. T.B. Schrøder, J.C. Dyre, Phys. Rev. Lett. 84, 310 (2000)

    Article  ADS  Google Scholar 

  35. S. Capaccioli, M. Lucchesi, R. Casalini, P.A. Rolla, N. Bona, J. Phys. D Appl. Phys. 33, 1036 (2000)

    Article  ADS  Google Scholar 

  36. J. Mijovic, Y. Bian, R.A. Gross, B. Chen, Macromolecules 38, 10812 (2005)

    Article  ADS  Google Scholar 

  37. G. Garcia-Belmonte, F. Henn, J. Bisquert, Chem. Phys. 330, 113 (2006)

    Article  Google Scholar 

  38. J.R. Macdonald, J. Appl. Phys. 107, 101101 (2010)

    Article  ADS  Google Scholar 

  39. M. Lalanne, P. Demont, A. Barnabe, J. Phys. D Appl. Phys. 44, 185401 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Algerian Ministry of Higher Education and Scientific Research under the UE Erasmus+ program. A special thanks to Prof. Ricardo Mendes Ribeiro for his hospitality in his lab at Minho University of Braga in Portugal.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to the analytical and numerical calculations contained in the present manuscript.

Corresponding author

Correspondence to Ahmed Benyahia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benyahia, A., Bouamrane, R. The temperature–frequency dependence of conductive random RC networks modelling heterogeneous/composite materials. Eur. Phys. J. B 96, 122 (2023). https://doi.org/10.1140/epjb/s10051-023-00588-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00588-x

Navigation