Skip to main content
Log in

Fabry–Pérot interference in Josephson junctions

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Conductance of metallic heterostructures can be controlled by applying a gate voltage to a region in the transport channel. For sufficiently long phase coherent channels, oscillations appear in conductance versus chemical potential plot, which can be explained by Fabry–Pérot interference. In this work, we study DC Josephson effect in a superconductor–normal metal–superconductor junctions. The chemical potential of the normal metal (NM) region can be tuned by an applied gate voltage. We numerically obtain the Andreev bound states formed within the superconducting gap and calculate Josephson current by summing up the currents carried by the occupied Andreev bound states. We find that the Josephson current oscillates as a function of the chemical potential in the NM region, and these oscillations can be explained by Fabry–Pérot interference condition. We find that Josephson current carried by one bound state can be higher than that carried by two or more bound states.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited.

References

  1. A. Perot, C. Fabry, On the application of interference phenomena to the solution of various problems of spectroscopy and metrology. Astrophys. J. 9, 87 (1899). https://doi.org/10.1086/140557

    Article  ADS  Google Scholar 

  2. B.S. Williams, Terahertz quantum-cascade lasers. Nat. Photonics 1, 517–525 (2007). https://doi.org/10.1038/nphoton.2007.166

    Article  ADS  Google Scholar 

  3. S. Kawamura, M.E. Zucker, Mirror-orientation noise in a Fabry–Perot interferometer gravitational wave detector. Appl. Opt. 33, 3912–3918 (1994). https://doi.org/10.1364/AO.33.003912

    Article  ADS  Google Scholar 

  4. J.L.H. Mik, B.M. Sparkes, C. Perrella, P.S. Light, S. Ng, A.N. Luiten, D.J. Ottaway, High-transmission fiber ring resonator for spectral filtering of master oscillator power amplifiers. OSA Continuum 2, 2487–2495 (2019). https://doi.org/10.1364/OSAC.2.002487

    Article  Google Scholar 

  5. W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park, Fabry–Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001)

    Article  ADS  Google Scholar 

  6. N. Ofek, A. Bid, M. Heiblum, A. Stern, V. Umansky, D. Mahalu, Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proc. Natl. Acad. Sci. USA 107, 5276–5281 (2010)

    Article  ADS  Google Scholar 

  7. A. Soori, S. Das, S. Rao, Magnetic-field-induced Fabry–Pérot resonances in helical edge states. Phys. Rev. B 86, 125312 (2012). https://doi.org/10.1103/PhysRevB.86.125312

    Article  ADS  Google Scholar 

  8. B.K. Sahoo, A. Soori, Transverse currents in spin transistors. J. Phys. Condens. Matter 35, 365302 (2023). https://doi.org/10.1088/1361-648X/acdbaf

    Article  Google Scholar 

  9. D. Suri, A. Soori, Finite transverse conductance in topological insulators under an applied in-plane magnetic field. J. Phys. Condens. Matter 33, 335301 (2021). https://doi.org/10.1088/1361-648X/ac06ea

    Article  Google Scholar 

  10. A. Soori, Finite transverse conductance and anisotropic magnetoconductance under an applied in-plane magnetic field in two-dimensional electron gases with strong spin-orbit coupling. J. Phys. Condens. Matter 33, 335303 (2021). https://doi.org/10.1088/1361-648X/ac09a4

    Article  Google Scholar 

  11. A. Soori, S. Mukerjee, Enhancement of crossed Andreev reflection in a superconducting ladder connected to normal metal leads. Phys. Rev. B 95, 104517 (2017). https://doi.org/10.1103/PhysRevB.95.104517

    Article  ADS  Google Scholar 

  12. R. Nehra, D.S. Bhakuni, A. Sharma, A. Soori, Enhancement of crossed Andreev reflection in a Kitaev ladder connected to normal metal leads. J. Phys. Condens. Matter 31, 345304 (2019). https://doi.org/10.1088/1361-648x/ab2403

    Article  Google Scholar 

  13. A. Soori, Transconductance as a probe of nonlocality of Majorana fermions. J. Phys. Condens. Matter 31, 505301 (2019). https://doi.org/10.1088/1361-648x/ab3f73

    Article  Google Scholar 

  14. A. Soori, Tunable crossed Andreev reflection in a heterostructure consisting of ferromagnets, normal metal and superconductors. Solid State Commun. 348–349, 114721 (2022). https://doi.org/10.1016/j.ssc.2022.114721

  15. A. Soori, M. Sivakumar, V. Subrahmanyam, Transmission across non-Hermitian PT-symmetric quantum dots and ladders. J. Phys. Condens. Matter 35, 055301 (2023). https://doi.org/10.1088/1361-648X/aca3ec

  16. B.D. Josephson, Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251 (1962). https://doi.org/10.1016/0031-9163(62)91369-0

    Article  ADS  MATH  Google Scholar 

  17. A. Furusaki, Josephson current carried by Andreev levels in superconducting quantum point contacts. Superlattices Microstruct. 25, 809–818 (1999). https://doi.org/10.1006/spmi.1999.0730

    Article  ADS  Google Scholar 

  18. C.W.J. Beenakker, H. van Houten, Josephson current through a superconducting quantum point contact shorter than the coherence length. Phys. Rev. Lett. 66, 3056–3059 (1991). https://doi.org/10.1103/PhysRevLett.66.3056

    Article  ADS  Google Scholar 

  19. H. van Houten, C.W.J. Beenakker, Andreev reflection and the Josephson effect in a quantum point contact: an analogy with phase-conjugating resonators. Phys. B Condens. Matter 175, 187–197 (1991). https://doi.org/10.1016/0921-4526(91)90712-N. (analogies in optics and micro-electronics)

    Article  ADS  Google Scholar 

  20. A. Soori, Scattering in quantum wires and junctions of quantum wires with edge states of quantum spin Hall insulators. Solid State Commun. 360, 115034 (2023). https://doi.org/10.1016/j.ssc.2022.115034

    Article  Google Scholar 

  21. G.E. Blonder, M. Tinkham, T.M. Klapwijk, Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515 (1982)

    Article  ADS  Google Scholar 

  22. A.L. Gudkov, M.Y. Kupriyanov, K.K. Likharev, Properties of Josephson junctions with amorphous-silicon interlayers. Sov. Phys. JETP 68, 1478 (1988)

    ADS  Google Scholar 

Download references

Acknowledgements

AS thanks DST-INSPIRE Faculty Award (Faculty Reg. no.: IFA17-PH190), SERB Core Research Grant (CRG/2022/004311) and University of Hyderabad Institute of Eminence PDF for financial support.

Author information

Authors and Affiliations

Authors

Contributions

AS conceived, designed, supervised the project, drafted, and revised the manuscript. SKS performed the theoretical calculations. Both the authors analyzed the results.

Corresponding author

Correspondence to Abhiram Soori.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, S.K., Soori, A. Fabry–Pérot interference in Josephson junctions. Eur. Phys. J. B 96, 115 (2023). https://doi.org/10.1140/epjb/s10051-023-00587-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00587-y

Navigation