Skip to main content
Log in

Inter-orbital hopping effects on the superconducting state properties of a two-band BCS model

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We analyze the superconducting state properties for the case of a two-band self-consistent BCS model that considers an electron band structure suitable for iron based superconducting materials. The superconducting gap parameters corresponding to each component electron band, \(|\Delta _{11}(T)|\) and \(|\Delta _{22}(T)|\), are investigated as function of temperature, T, inter-orbital hopping parameter, \(t_4\), and electron doping, N. The values of the two ratios \(2|\Delta ^0_{11}|/T_c\) and \(2|\Delta ^0_{22}|/T_c\) are not universal, and they are strongly dependent on the value of the hopping parameter, \(t_4\). In the case of \(s^\pm \)-wave symmetry, the superconducting state in the system exists only at certain electron doping concentrations, leading to a complex superconducting phase diagram for iron based superconducting materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study with no experimental data. All numerical data generated during this study are available on reasonable request.]

References

  1. V. Moskalenko, Fiz. Metal. Metall. 8, 2518 (1959)

    Google Scholar 

  2. H. Suhl, B.T. Matthias, L.R. Walker, Phys. Rev. Lett. 3, 552 (1959). https://doi.org/10.1103/PhysRevLett.3.552

    Article  ADS  Google Scholar 

  3. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957). https://doi.org/10.1103/PhysRev.108.1175

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Revolinsky, E. Lautenschlager, C. Armitage, Solid State Commun. 1, 59 (1963). https://doi.org/10.1016/0038-1098(63)90358-2

    Article  ADS  Google Scholar 

  5. A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T.M. Palstra, A.P. Ramirez, A.R. Kortan, Nature 350, 600 (1991). https://doi.org/10.1038/350600a0

    Article  ADS  Google Scholar 

  6. R.J. Cava, H.W. Zandbergen, B. Batlogg, H. Eisaki, H. Takagi, J.J. Krajewski, W.F. Peck, E.M. Gyorgy, S. Uchida, Nature 372, 245 (1994). https://doi.org/10.1038/372245a0

    Article  ADS  Google Scholar 

  7. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001). https://doi.org/10.1038/35065039

    Article  ADS  Google Scholar 

  8. Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, H. Hosono, J. Am. Chem. Soc. 128, 10012 (2006). https://doi.org/10.1021/ja063355c

    Article  Google Scholar 

  9. M. Rotter, M. Tegel, D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008). https://doi.org/10.1103/PhysRevLett.101.107006

    Article  ADS  Google Scholar 

  10. M. Tinkham, Introduction to Superconductivity, 2nd ed. Dover Publications, Mineola (2004). https://store.doverpublications.com/0486435032.html

  11. Z.-A. Ren, G.-C. Che, X.-L. Dong, J. Yang, W. Lu, W. Yi, X.-L. Shen, Z.-C. Li, L.-L. Sun, F. Zhou, Z.-X. Zhao, Europhys. Lett. 83, 17002 (2008)

    Article  ADS  Google Scholar 

  12. H. Hosono, A. Yamamoto, H. Hiramatsu, Y. Ma, Mater. Today 21, 278 (2018). https://doi.org/10.1016/j.mattod.2017.09.006

    Article  Google Scholar 

  13. R.M. Fernandes, A.V. Chubukov, Rep. Prog. Phys. 80, 014503 (2016). https://doi.org/10.1088/1361-6633/80/1/014503

    Article  ADS  Google Scholar 

  14. H. Ikeda, R. Arita, J. Kuneš, Phys. Rev. B 81, 054502 (2010). https://doi.org/10.1103/PhysRevB.81.054502

    Article  ADS  Google Scholar 

  15. S. Raghu, X.-L. Qi, C.-X. Liu, D.J. Scalapino, S.-C. Zhang, Phys. Rev. B 77, 220503 (2008). https://doi.org/10.1103/PhysRevB.77.220503

    Article  ADS  Google Scholar 

  16. R.M. Fernandes, A.V. Chubukov, J. Schmalian, Nat. Phys. 10, 97 (2014). https://doi.org/10.1038/nphys2877

    Article  Google Scholar 

  17. P.J. Hirschfeld, M.M. Korshunov, I.I. Mazin, Rep. Prog. Phys. 74, 124508 (2011). https://doi.org/10.1088/0034-4885/74/12/124508

    Article  ADS  Google Scholar 

  18. V. Mishra, G.R. Boyd, S. Graser, T. Maier, P.J. Hirschfeld, D.J. Scalapino, Phys. Rev. B 79, 094512 (2009). https://doi.org/10.1103/PhysRevB.79.094512

    Article  ADS  Google Scholar 

  19. A. Chubukov, P.J. Hirschfeld, Phys. Today 68, 46 (2015). https://doi.org/10.1063/PT.3.2818

    Article  Google Scholar 

  20. Y. Bang, G.R. Stewart, J. Phys. Condens. Matter 29, 123003 (2017). https://doi.org/10.1088/1361-648X/aa564b

    Article  ADS  Google Scholar 

  21. K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, H. Aoki, Phys. Rev. Lett. 101, 087004 (2008). https://doi.org/10.1103/PhysRevLett.101.087004

    Article  ADS  Google Scholar 

  22. F. Wang, H. Zhai, Y. Ran, A. Vishwanath, D.-H. Lee, Phys. Rev. Lett. 102, 047005 (2009). https://doi.org/10.1103/PhysRevLett.102.047005

    Article  ADS  Google Scholar 

  23. S. Graser, T.A. Maier, P.J. Hirschfeld, D.J. Scalapino, New J. Phys. 11, 025016 (2009). https://doi.org/10.1088/1367-2630/11/2/025016

    Article  ADS  Google Scholar 

  24. K.A. Musaelian, J. Betouras, A.V. Chubukov, R. Joynt, Phys. Rev. B 53, 3598 (1996). https://doi.org/10.1103/PhysRevB.53.3598

    Article  ADS  Google Scholar 

  25. E.J. Nicol, J.P. Carbotte, Phys. Rev. B 71, 054501 (2005). https://doi.org/10.1103/PhysRevB.71.054501

    Article  ADS  Google Scholar 

  26. A.A. Schmidt, JJ Rodríguez. Núñez, A. Bianconi, A. Perali, J. Supercond. Novel Magn. 24, 1213 (2011). https://doi.org/10.1007/s10948-010-1112-2

    Article  Google Scholar 

  27. JJ Rodríguez. Núñez, A.A. Schmidt, I. Tifrea, Eur. Phys. J. B 95, 179 (2022). https://doi.org/10.1140/epjb/s10051-022-00447-1

    Article  ADS  Google Scholar 

  28. A.A. Vargas-Paredes, A.A. Shanenko, A. Vagov, M.V. Milošević, A. Perali, Phys. Rev. B 101, 094516 (2020). https://doi.org/10.1103/PhysRevB.101.094516

    Article  ADS  Google Scholar 

  29. I.I. Mazin, D.J. Singh, M.D. Johannes, M.H. Du, Phys. Rev. Lett. 101, 057003 (2008). https://doi.org/10.1103/PhysRevLett.101.057003

    Article  ADS  Google Scholar 

  30. D.J. Singh, M.-H. Du, Phys. Rev. Lett. 100, 237003 (2008). https://doi.org/10.1103/PhysRevLett.100.237003

    Article  ADS  Google Scholar 

  31. K. Haule, J.H. Shim, G. Kotliar, Phys. Rev. Lett. 100, 226402 (2008). https://doi.org/10.1103/PhysRevLett.100.226402

    Article  ADS  Google Scholar 

  32. R. Sknepnek, G. Samolyuk, Y.-B. Lee, J. Schmalian, Phys. Rev. B 79, 054511 (2009). https://doi.org/10.1103/PhysRevB.79.054511

    Article  ADS  Google Scholar 

  33. J. Ketterson, S. Song, Superconductivity. Cambridge University Press, pp. 31–42 (1999). https://books.google.com.br/books?id=vGmXQgAACAAJ

  34. M. Iavarone, G. Karapetrov, A.E. Koshelev, W.K. Kwok, G.W. Crabtree, D.G. Hinks, W.N. Kang, E.-M. Choi, H.J. Kim, H.-J. Kim, S.I. Lee, Phys. Rev. Lett. 89, 187002 (2002). https://doi.org/10.1103/PhysRevLett.89.187002

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Numerical calculations were performed at LANA, UFSM, Brazil. One of the authors, IT, would like to acknowledge the financial support received from the internal research program at CSUF.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to I. Tifrea.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Núñez, J.J.R., Schmidt, A.A. & Tifrea, I. Inter-orbital hopping effects on the superconducting state properties of a two-band BCS model. Eur. Phys. J. B 96, 104 (2023). https://doi.org/10.1140/epjb/s10051-023-00571-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00571-6

Navigation