Skip to main content
Log in

First-principles study on the photocatalytic property of SiS/BSe and SiS2/BSe van der Waals heterojunctions

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using hybrid density functional method, the structure stability, electronic, interfacial and optical characters of the SiS/BSe and SiS2/BSe heterojunctions as well as the effect of electric field and biaxial strain on their photocatalytic performance were systematically studied. The SiS/BSe and SiS2/BSe heterojunctions have structure and thermodynamic stability (at 300 K) and possess stagger band alignment structure and belong to type II heterostructure, which realizes separation of excited electrons and holes in space and prolongs the life time. The two heterojunctions can efficiently promote adsorption rate of solar energy and broaden optical response scope compared with the monolayer BSe. The biaxial strain and electric field can effectively tune the bandgap and the band edge positions of the two heterojunctions. In contrast to the monolayers BSe, the SiS/BSe and SiS2/BSe heterojunctions have much lower \({m}_{\mathrm{e}}^{*}\), showing much higher electron mobility and better photocatalytic activity. The STH efficiency of SiS/BSe and SiS2/BSe heterojunctions is 16.78% and 26.67%, which are higher than that of the monolayers SiS, SiS2 and BSe. The results indicate that SiS/BSe and SiS2/BSe heterojunctions can be used as promising candidates for photocatalytic water splitting.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during the current study are available from the corresponding author on reasonable request].

References

  1. S. Kumar, A. Kumar, A. Bahuguna, V. Sharma, V. Krishnan, Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications. Beilstein J. Nanotechnol. 8, 1571–1600 (2017)

    Article  Google Scholar 

  2. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)

    Article  Google Scholar 

  3. M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013)

    Article  Google Scholar 

  4. K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Progr. Energy Combust. Sci. 36, 307–326 (2010)

    Article  Google Scholar 

  5. I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy 40, 11094–11111 (2015)

    Article  Google Scholar 

  6. S. Kubo, H. Nakajima, S. Kasahara, S. Higashi, T. Masaki, H. Abe, K. Onuki, A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine–sulfur process. Nucl. Eng. Des. 233, 347–354 (2004)

    Article  Google Scholar 

  7. J.E. Funk, Thermochemical hydrogen production: past and present. Int. J. Hydrogen Energy 26, 185–190 (2001)

    Article  ADS  Google Scholar 

  8. M. Ni, D.Y.C. Leung, M.K.H. Leung, A review on reforming bio-ethanol for hydrogen production. Int. J. Hydrogen Energy 32, 3238–3247 (2007)

    Article  Google Scholar 

  9. P. Ferreira Aparicio, M.J. Benito, J.L. Sanz, New trends in reforming technologies: from hydrogen industrial plants to multifuel microreformers. Catal. Rev. 47, 491–588 (2005)

    Article  Google Scholar 

  10. A.F. Ghenciu, Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr. Opin. Solid State Mater. Sci. 6, 389–399 (2002)

    Article  ADS  Google Scholar 

  11. S.S. Xiaobo Chen, L. Guo, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010)

    Article  Google Scholar 

  12. M.D. Hernández Alonso, F. Fresno, S. Suárez, J.M. Coronado, Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ. Sci. 2, 1231–1257 (2009)

    Article  Google Scholar 

  13. K.A. Hideki Kato, Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 125, 3082–3089 (2003)

    Article  Google Scholar 

  14. K.S.A. Kudo, A. Tanaka, Nickel-loaded K4Nb6O17 photocatalyst in the decomposition of H2 into H2 and O2: structure and reaction mechanism. J. Catal. 120, 337–352 (1989)

    Article  Google Scholar 

  15. K. Ren, Y. Luo, S. Wang, J.P. Chou, J. Yu, W. Tang, M. Sun, A van der Waals heterostructure based on graphene-like gallium nitride and boron selenide: a high-efficiency photocatalyst for water splitting. ACS Omega 4, 21689–21697 (2019)

    Article  Google Scholar 

  16. Q. Wang, K. Domen, Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020)

    Article  Google Scholar 

  17. F. Liu, R. Shi, Z. Wang, Y. Weng, C.M. Che, Y. Chen, Direct Z-scheme hetero-phase junction of black/red phosphorus for photocatalytic water splitting. Angew. Chem. Int. Ed. Engl. 58, 11791–11795 (2019)

    Article  Google Scholar 

  18. Q. Xu, L. Zhang, J. Yu, S. Wageh, A.A. Al-Ghamdi, M. Jaroniec, Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater. Today 21, 1042–1063 (2018)

    Article  Google Scholar 

  19. H. Li, Y. Xiong, H. Zhang, L. Ye, W. Li, First-principles study of electric field and strain modulation in GaS-BSe vdW heterostructured bilayer for bandstructure engineering. Mater. Chem. Phys. 277, 125615 (2022)

    Article  Google Scholar 

  20. Y.B. Wu, C. He, F.S. Han, W.X. Zhang, Construction of an arsenene/g-C3N4 hybrid heterostructure towards enhancing photocatalytic activity of overall water splitting: a first-principles study. J. Solid State Chem. 299, 122138 (2021)

    Article  Google Scholar 

  21. Q. Jin, X. Dai, J. Song, K. Pu, X. Wu, J. An, T. Zhao, High photocatalytic performance of g-C3N4/WS2 heterojunction from first principles. Chem. Phys. 545, 111141 (2021)

    Article  Google Scholar 

  22. I. Shahid, A. Ali, J.-M. Zhang, I. Muhammad, I. Ahmad, F. Kabir, Two dimensional MoSSe/BSe vdW heterostructures as potential photocatalysts for water splitting with high carrier mobilities. Int. J. Hydrogen Energy 46, 14247–14258 (2021)

    Article  Google Scholar 

  23. X. Huang, Z. Cui, X. Shu, H. Dong, Y. Weng, Y. Wang, Z. Yang, First-principles study on the electronic properties of GeC/BSe van der Waals heterostructure: a direct Z-scheme photocatalyst for overall water splitting. Phys. Rev. Mater. 6, 034010 (2022)

    Article  Google Scholar 

  24. H. Lv, Y. Huang, R.T. Koodali, G. Liu, Y. Zeng, Q. Meng, M. Yuan, Synthesis of sulfur-doped 2D graphitic carbon nitride nanosheets for efficient photocatalytic degradation of phenol and hydrogen evolution. ACS Appl. Mater. Interfaces 12, 12656–12667 (2020)

    Article  Google Scholar 

  25. Z. Zhu, X. Tang, W. Fan, Z. Liu, P. Huo, T. Wang, Y. Yan, C. Li, Studying of Co-doped g-C3N4 and modified with Fe3O4 quantum dots on removing tetracycline. J. Alloys Compd. 775, 248–258 (2019)

    Article  Google Scholar 

  26. M.R. AshwinKishore, A.O. Sjåstad, P. Ravindran, Influence of hydrogen and halogen adsorption on the photocatalytic water splitting activity of C2N monolayer: a first-principles study. Carbon 141, 50–58 (2019)

    Article  Google Scholar 

  27. J. Xiong, J. Di, J. Xia, W. Zhu, H. Li, Surface defect engineering in 2D nanomaterials for photocatalysis. Adv. Funct. Mater. 28, 1801983–1802002 (2018)

    Article  Google Scholar 

  28. T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 8, 2253–2276 (2018)

    Article  Google Scholar 

  29. S. Demirci, N. Avazlı, E. Durgun, S. Cahangirov, Structural and electronic properties of monolayer group III monochalcogenides. Phys. Rev. B 95, 115409–115417 (2017)

    Article  ADS  Google Scholar 

  30. S.V. Eremeev, M. Papagno, I. Grimaldi, Insight into the electronic structure of semiconducting ε-GaSe and ε-InSe. Phys. Rev. Mater. 4, 084603–084610 (2020)

    Article  Google Scholar 

  31. W. Huang, L. Gan, H. Li, Y. Ma, T. Zhai, 2D layered group IIIA metal chalcogenides: synthesis, properties and applications in electronics and optoelectronics. CrystEngComm 18, 3968–3984 (2016)

    Article  Google Scholar 

  32. Y. Luo, K. Ren, S. Wang, J.P. Chou, J. Yu, Z. Sun, M. Sun, First-principles study on transition-metal dichalcogenide/BSe van der Waals heterostructures: a promising water-splitting photocatalyst. J. Mater. Chem. C 123, 22742–22751 (2019)

    Google Scholar 

  33. B.J. Wang, X.H. Li, R. Zhao, Electronic structures and enhanced photocatalytic properties of blue phosphorene/BSe van der Waals heterostructures. J. Mater. Chem. A 6, 8923–8929 (2018)

    Article  Google Scholar 

  34. Z. Yang, H. Chen, F. Wu, Y. Hou, J. Qiao, X. Ma, H. Bai, B. Ma, J. Li, Investigation on photocatalytic property of SiH/GaSe and SiH/InSe heterojunctions for photocatalytic water splitting. Int. J. Hydrogen Energy 47, 31295–31308 (2022)

    Article  Google Scholar 

  35. A. Abid, M. Haneef, S. Ali, A. Dahshan, Optoelectronic and photocatalytic properties of GaN, GeS and SiS monolayers and their vdW heterostructures. J. Phys. Chem. Solids 161, 110433–110441 (2022)

    Article  Google Scholar 

  36. J.H. Yang, Y. Zhang, W.J. Yin, X.G. Gong, B.I. Yakobson, S.H. Wei, Two-dimensional SiS layers with promising electronic and optoelectronic properties: theoretical prediction. Nano Lett. 16, 1110–1117 (2016)

    Article  ADS  Google Scholar 

  37. K. Ren, X. Ma, X. Liu, Y. Xu, W. Huo, W. Li, G. Zhang, Prediction of 2D IV-VI semiconductors: auxetic materials with direct bandgap and strong optical absorption. Nanoscale 14, 8463–8473 (2022)

    Article  Google Scholar 

  38. Y.L. Zhu, J.H. Yuan, Y.Q. Song, S. Wang, Two-dimensional silicon chalcogenides with high carrier mobility for photocatalytic water splitting. J. Mater. Sci. 54, 11485–11496 (2019)

    Article  ADS  Google Scholar 

  39. K. Ren, S. Wang, Y. Luo, Y. Xu, M. Sun, J. Yu, W. Tang, Strain-enhanced properties of van der Waals heterostructure based on blue phosphorus and g-GaN as a visible-light-driven photocatalyst for water splitting. RSC Adv. 9, 4816–4823 (2019)

    Article  ADS  Google Scholar 

  40. M. Naseri, M. Abutalib, M. Alkhambashi, J. Gu, J. Jalilian, A. Farouk, J. Batle, Prediction of novel SiX2(X = S, Se) monolayer semiconductors by density functional theory. Phys. E (Amsterdam, Neth.) 114, 113581–113605 (2019)

    Article  Google Scholar 

  41. D. Plasienka, R. Martonak, E. Tosatti, Creating new layered structures at high pressures: SiS2. Sci Rep 6, 37694 (2016)

    Article  ADS  Google Scholar 

  42. Q.Y. Chen, M.Y. Liu, C. Cao, Y. He, Strain-dependent optical properties of the novel monolayer group-IV dichalcogenides SiS2 semiconductor: a first-principles study. Nanotechnology 32, 235201–235213 (2021)

    Article  ADS  Google Scholar 

  43. G. Kresse, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    Article  Google Scholar 

  44. G. Kresse, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  Google Scholar 

  45. G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B Condens. Matter. 49, 14251–14269 (1994)

    Article  ADS  Google Scholar 

  46. G. Kresse, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  ADS  Google Scholar 

  47. K.B. John, P. Perdew, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  48. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)

    Article  Google Scholar 

  49. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003)

    Article  ADS  Google Scholar 

  50. H. Jiang, T. Zhao, Y. Ren, R. Zhang, M. Wu, Ab initio prediction and characterization of phosphorene-like SiS and SiSe as anode materials for sodium-ion batteries. Sci. Bull. 62, 572–578 (2017)

    Article  Google Scholar 

  51. J. Ye, J. Liu, Y. An, Electric field and strain effects on the electronic and optical properties of g-C3N4/WSe2 van der Waals heterostructure. Appl. Surf. Sci. 501, 144262–144297 (2020)

    Article  Google Scholar 

  52. S.D.G. StefanoBaroni, Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001)

    Article  Google Scholar 

  53. H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci, Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys. Rev. B 80, 155453–155465 (2009)

    Article  ADS  Google Scholar 

  54. D. Zhang, Z. Zhou, Y. Hu, Z. Yang, WS2/BSe van der Waals type-II heterostructure as a promising water splitting photocatalyst. Mater. Res. Express 6, 035513–035519 (2018)

    Article  ADS  Google Scholar 

  55. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Article  ADS  Google Scholar 

  56. S.S. Ullah, H.U. Din, Q. Alam, First principles study of electronic properties and optoelectronic performance of type-II SiS/BSe heterostructure. New J. Chem. 47, 4537–4542 (2023)

    Article  Google Scholar 

  57. N. Song, Y. Wang, Z. Yuan, F. Wang, First-principles study on the vertical heterostructure of the BSe and AlN monolayers. Appl. Surf. Sci. 598, 153830–153838 (2022)

    Article  Google Scholar 

  58. J.J. Liu, X.L. Fu, S.F. Chen, Y.F. Zhu, Electronic structure and optical properties of Ag3PO4 photocatalyst calculated by hybrid density functional method. Appl. Phys. Lett. 99, 191903 (2011)

    Article  ADS  Google Scholar 

  59. K.D. Pham, L.V. Tan, M. Idrees, B. Amin, N.N. Hieu, H.V. Phuc, L.T. Hoa, N.V. Chuong, Electronic structures, and optical and photocatalytic properties of the BP–BSe van der Waals heterostructures. New J. Chem. 44, 14964–14969 (2020)

    Article  Google Scholar 

  60. H.L. Zhuang, R.G. Hennig, Single-layer group-III monochalcogenide photocatalysts for water splitting. Chem. Mater. 25, 3232–3238 (2013)

    Article  Google Scholar 

  61. V. Chakrapani, J.C. Angus, A.B. Anderson, S.D. Wolter, B.R. Stoner, G.U. Sumanasekera, Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple. Science 318, 1424–1430 (2007)

    Article  ADS  Google Scholar 

  62. J.S. CenFeng Fu, Qiquan Luo, Intrinsic electric fields in two-dimensional materials boost the-solar-to-hydrogen efficiency for photocatalytic water splitting. Nano Lett. 18, 6312–6317 (2018)

    Article  ADS  Google Scholar 

  63. J. Li, Z. Huang, W. Ke, J. Yu, K. Ren, Z. Dong, High solar-to-hydrogen efficiency in Arsenene/GaX (X = S, Se) van der Waals heterostructure for photocatalytic water splitting. J. Alloys Compd. 866, 158774–158782 (2021)

    Article  Google Scholar 

  64. Z. Zhu, K. Ren, H. Shu, Z. Cui, Z. Huang, J. Yu, Y. Xu, First-principles study of electronic and optical properties of two-dimensional WSSe/BSe van der Waals heterostructure with high solar-to-hydrogen efficiency. Catalysts 11, 991 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Natural Science Foundation of Ningxia (Grant No. 2023AAC03080, 2022AAC03003, 2022AAC03150) for providing financial support.

Author information

Authors and Affiliations

Authors

Contributions

W-JZ: simulate calculations, formal analysis, visualization and writing—original draft. LM: methodology, writing—original draft, writing—review and editing and funding acquisition. L-CM: writing—review, investigation. X-hT: formal analysis and writing—review. J-MZ: investigation.

Corresponding author

Correspondence to Ling Ma.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 350 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, WJ., Ma, L., Ma, LC. et al. First-principles study on the photocatalytic property of SiS/BSe and SiS2/BSe van der Waals heterojunctions. Eur. Phys. J. B 96, 102 (2023). https://doi.org/10.1140/epjb/s10051-023-00569-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00569-0

Navigation