Skip to main content
Log in

Anomalous heat conduction and thermal rectification in weak nonlinear lattices

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Heat conduction in one-dimensional system is generally found to be anomalous. However, the scaling behavior of thermal conductivity with system length is still up for debate among theoretical, numerical and experimental results. Here with a devised adjustable reflectivity heat reservoir, we re-address the anomalous heat conduction in one-dimensional Fermi–Pasta–Ulam \(\beta \) (FPU-\(\beta \)) lattices under weak nonlinear conditions. Our results show that, the boundary thermal resistance has an important impact on the divergent thermal conductivity of one-dimensional systems with weak nonlinearity. As an application of this concept, we design a thermal rectification model in one material with asymmetric boundary coupling, which is in sharp contrast to the well-known thermal rectifiers composed of two different materials. Our findings shed light on the intrinsic heat conduction in weak nonlinear lattices, which might be helpful to understand the heat transfer experiments of one-dimensional materials, such as carbon nanotubes, nanowires, and polymer chains.

Graphical abstract

Influence of boundary thermal resistance on anomalous heat conduction in weak nonlinear lattices

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The results are obtained mainly through numerical simulations, and all the related data have been shown in the figures of the article.]

References

  1. G. Chen, Non-Fourier phonon heat conduction at the microscale and nanoscale. Nat. Rev. Phys. 3, 555–569 (2021)

    Article  Google Scholar 

  2. Y.F. Zhang, Q. Lv, H.D. Wang, S.Y. Zhao, Q.H. Xiong, R.T. Lv, X. Zhang, Simultaneous electrical and thermal rectification in a monolayer lateral heterojunction. Science 378, 169–175 (2022)

    Article  ADS  Google Scholar 

  3. C.W. Chang, D. Okawa, H. Garcia, A. Majumdar, A. Zettl, Breakdown of Fourier’s law in nanotube thermal conductors. Phys. Rev. Lett. 101, 075903 (2008)

    Article  ADS  Google Scholar 

  4. C.W. Chang, D. Okawa, A. Majumdar, A. Zettl, Solid-state thermal rectifier. Science 314, 1121–1124 (2006)

    Article  ADS  Google Scholar 

  5. S. Huberman, R.A. Duncan, K. Chen, B. Song, V. Chiloyan, Z. Ding, A.A. Maznev, G. Chen, K.A. Nelson, Observation of second sound in graphite at temperatures above 100 K. Science 364, 375–379 (2019)

    Article  ADS  Google Scholar 

  6. T.K. Hsiao, H.K. Chang, S.C. Liou, M.W. Chu, S.C. Lee, C.W. Chang, Observation of room-temperature ballistic thermal conduction persisting over 8.3 μm SiGe nanowires. Nat. Nanotechnol. 8, 534–538 (2013)

    Article  ADS  Google Scholar 

  7. S. Shen, A. Henry, J. Tong, R. Zheng, G. Chen, Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5, 251–255 (2010)

    Article  ADS  Google Scholar 

  8. S. Lepri, R. Livi, A. Politi, Too close to integrable: Crossover from normal to anomalous heat diffusion. Phys. Rev. Lett. 125, 040604 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. G. Benenti, S. Lepri, R. Livi, Anomalous heat transport in classical many-body systems: overview and perspectives. Front. Phys. 8, 00292 (2020)

    Article  Google Scholar 

  10. A.M. Lacerda, J. Goold, G.T. Landi, Dephasing enhanced transport in boundary-driven quasiperiodic chains. Phys. Rev. E 104, 174203 (2021)

    Article  ADS  Google Scholar 

  11. J. Wang, T.X. Liu, X.Z. Luo, X.L. Xu, N.B. Li, Anomalous energy diffusion in two-dimensional nonlinear lattices. Phys. Rev. E 101, 012126 (2020)

    Article  ADS  Google Scholar 

  12. S. Lepri, R. Livi, A. Politi, Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  13. N. Mingo, D.A. Broido, Carbon nanotube ballistic thermal conductance and its limits. Phys. Rev. Lett. 95, 096105 (2005)

    Article  ADS  Google Scholar 

  14. H.V. Beijeren, Exact results for anomalous transport in one-dimensional Hamiltonian systems. Phys. Rev. Lett. 108, 180601 (2012)

    Article  Google Scholar 

  15. N. Mingo, D.A. Broido, Length dependence of carbon nanotube thermal conductivity and the “problem of long waves.” Nano Lett. 5, 1221–1225 (2005)

    Article  ADS  Google Scholar 

  16. D. Bagchi, Heat transport in long-ranged Fermi-Pasta-Ulam-Tsingou-type models. Phys. Rev. E 104, 054108 (2021)

    Article  ADS  Google Scholar 

  17. S. Tamaki, M. Sasada, K. Saito, Heat transport via low-dimensional systems with broken time-reversal symmetry. Phys. Rev. Lett. 119, 110602 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. D.S.K. Sato, Universal scaling for recovery of Fourier’s law in low-dimensional solids under momentum conservation. Phys. Rev. E 102, 012111 (2020)

    Article  ADS  Google Scholar 

  19. S. Narayana, Y. Sato, Heat flux manipulation with engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012)

    Article  ADS  Google Scholar 

  20. N.B. Li, J. Ren, L. Wang, G. Zhang, P. Hanggi, B.W. Li, Colloquium: Phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045–1066 (2012)

    Article  ADS  Google Scholar 

  21. X.K. Gu, Y.J. Wei, X.B. Yin, B.W. Li, R.G. Yang, Colloquium: Phononic thermal properties of two-dimensional materials. Rev. Mod. Phys. 90, 041002 (2018)

    Article  ADS  Google Scholar 

  22. M. Terraneo, M. Peyrard, G. Casati, Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier. Phys. Rev. Lett. 88, 094302 (2002)

    Article  ADS  Google Scholar 

  23. B.W. Li, L. Wang, G. Casati, Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004)

    Article  ADS  Google Scholar 

  24. B.W. Li, L. Wang, G. Casati, Negative differential thermal resistance and thermal transistor. Appl. Phys. Lett. 88, 143501 (2006)

    Article  ADS  Google Scholar 

  25. K. Aoki, D. Kusnezov, Fermi-Pasta-Ulam beta model: boundary jumps, Fourier’s law, and scaling. Phys. Rev. Lett. 86, 4029–4032 (2001)

    Article  ADS  Google Scholar 

  26. S. Lepri, R. Livi, A. Politi, Heat conduction in chains of nonlinear oscillators. Phys. Rev. Lett. 78, 1896–1899 (1997)

    Article  ADS  Google Scholar 

  27. T. Mai, A. Dhar, O. Narayan, Equilibration and universal heat conduction in Fermi–Pasta–Ulam chains. Phys. Rev. Lett. 98, 184301 (2007)

    Article  ADS  Google Scholar 

  28. Z.W. Zhang, Y.L. Ouyang, Y. Cheng, J. Chen, N.B. Li, G. Zhang, Size-dependent phononic thermal transport in low-dimensional nanomaterials. Phys. Rep. 860, 1–26 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. N. Yang, X.F. Xu, G. Zhang, B.W. Li, Thermal transport in nanostructures. AIP Adv. 2, 041410 (2012)

    Article  ADS  Google Scholar 

  30. A. Pereverzev, Fermi-Pasta-Ulam beta lattice: Peierls equation and anomalous heat conductivity. Phys. Rev. E 68, 056124 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  31. O. Narayan, S. Ramaswamy, Anomalous heat conduction in one-dimensional momentum-conserving systems. Phys. Rev. Lett. 89, 200601 (2002)

    Article  ADS  Google Scholar 

  32. T. Mai, O. Narayan, Universality of one-dimensional heat conductivity. Phys. Rev. E 73, 061202 (2006)

    Article  ADS  Google Scholar 

  33. G. Zhang, B.W. Li, Thermal conductivity of nanotubes revisited: Effects of chirality, isotope impurity, tube length, and temperature. J. Chem. Phys. 123, 114714 (2005)

    Article  ADS  Google Scholar 

  34. N. Yang, G. Zhang, B.W. Li, Violation of Fourier’s law and anomalous heat diffusion in silicon nanowires. Nano Today 5, 85–90 (2010)

    Article  Google Scholar 

  35. T.J. Alexander, High-heat-flux rectification due to a localized thermal diode. Phys. Rev. E 101, 062122 (2020)

    Article  ADS  Google Scholar 

  36. B.W. Li, J.H. Lan, L. Wang, Interface thermal resistance between dissimilar anharmonic lattices. Phys. Rev. Lett. 95, 104302 (2005)

    Article  ADS  Google Scholar 

  37. B.B. Hu, L. Yang, Y. Zhang, Asymmetric heat conduction in nonlinear lattices. Phys. Rev. Lett. 97, 124302 (2006)

    Article  ADS  Google Scholar 

  38. D. Segal, Absence of thermal rectification in asymmetric harmonic chains with self-consistent reservoirs. Phys. Rev. E 79, 012103 (2009)

    Article  ADS  Google Scholar 

  39. Z.G. Lu, J. Wang, Thermal rectification in the one-dimensional nonlinearly graded rotor lattice robust in the thermodynamical limit. Phys. Rev. E 104, 054122 (2021)

    Article  ADS  Google Scholar 

  40. P.F. Jiang, S.Q. Hu, Y.L. Ouyang, W.J. Ren, C.Q. Yu, Z.W. Zhang, J. Chen, Remarkable thermal rectification in pristine and symmetric monolayer graphene enabled by asymmetric thermal contact. J. Appl. Phys. 127, 235101 (2020)

    Article  ADS  Google Scholar 

  41. J. Chen, X.F. Xu, J. Zhou, B.W. Li, Interfacial thermal resistance: past, present, and future. Rev. Mod. Phys. 94, 025002 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  42. K. Yoshimura, Y. Doi, T. Kitamura, Heat transport in nonlinear lattices free from the umklapp process. Phys. Rev. E 105, 024140 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  43. E.T. Swartz, R.O. Pohl, Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989)

    Article  ADS  Google Scholar 

  44. J. Paul, O.V. Gendelman, Kapitza resistance at a domain boundary in linear and nonlinear chains. Phys. Rev. E 104, 054119 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  45. N.W. Ashcroft, N.D. Mermin, Solid state physics (Harcourt, Orlando, 1976)

    MATH  Google Scholar 

  46. T. Sun, J.X. Wang, W. Kang, Ubiquitous thermal rectification induced by non-diffusive weak scattering at low temperature in one-dimensional materials: Revealed with a non-reflective heat reservoir. Europhys. Lett. 105, 16004 (2014)

    Article  ADS  Google Scholar 

  47. M.S. Dresselhaus, P.C. Eklund, Phonons in carbon nanotubes. Adv. Phys. 49, 705–814 (2000)

    Article  ADS  Google Scholar 

  48. L. Lindsay, D.A. Broido, Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81, 205441 (2010)

    Article  ADS  Google Scholar 

  49. C.M. Marian, M. Gastreich, J.D. Gale, Empirical two-body potential for solid silicon nitride, boron nitride, and borosilazane modifications. Phys. Rev. B 62, 3117–3124 (2000)

    Article  ADS  Google Scholar 

  50. M.P. Allen, D.J. Tildesley, Computer simulations of liquids (Clarendon, Oxford, 1987)

    MATH  Google Scholar 

  51. L. Defaveri, C. Olivarer, C. Anteneodo, Heat flux in chains of nonlocally coupled harmonic oscillators: mean-field limit. Phys. Rev. E 105, 054149 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  52. P.B. Allen, N.A. Nghiem, Heat pulse propagation and nonlocal phonon heat transport in one-dimensional harmonic chains. Phys. Rev. B 105, 174302 (2022)

    Article  ADS  Google Scholar 

  53. Z.T. Tian, B.E. White, Y. Sun, Phonon wave-packet interference and phonon tunneling based energy transport across nanostructured thin films. Appl. Phys. Lett. 96, 263113 (2010)

    Article  ADS  Google Scholar 

  54. V. Lee, C.H. Wu, Z.X. Lou, W.L. Lee, C.W. Chang, Divergent and ultrahigh thermal conductivity in millimeter-long nanotubes. Phys. Rev. Lett. 118, 135901 (2017)

    Article  ADS  Google Scholar 

  55. R. Anufriev, S. Gluchko, S. Volz, M. Nomura, Quasi-ballistic heat conduction due to Levy phonon flights in silicon nanowires. ACS Nano 12, 11928–11935 (2018)

    Article  Google Scholar 

  56. Z.W. Zhang, S.Q. Hu, J. Chen, B.W. Li, Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation. Nanotechnology 28, 225704 (2017)

    Article  ADS  Google Scholar 

  57. Z. Li, S.Y. Xiong, C. Sievers, Y. Hu, Z.Y. Fan, N. Wei, H. Bao, S.D. Chen, D. Donadio, T. Ala-Nissila, Influence of thermostatting on nonequilibrium molecular dynamics simulations of heat conduction in solids. J. Chem. Phys. 151, 234105 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC no. 12202019).

Author information

Authors and Affiliations

Authors

Contributions

TS: methodology, investigation, writing—original draft. L-HS: conceptualization, validation, visualization. KZ: formal analysis, validation, supervision. The results are obtained mainly through numerical simulations, and all the related data have been shown in the figures of the article.

Corresponding author

Correspondence to Kai Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Shao, LH. & Zhang, K. Anomalous heat conduction and thermal rectification in weak nonlinear lattices. Eur. Phys. J. B 96, 99 (2023). https://doi.org/10.1140/epjb/s10051-023-00568-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00568-1

Navigation