Skip to main content
Log in

End-point singularity of the XY-paramagnetic phase boundary for the \((2+1)\)D \(S=1\) square-lattice \(J_1\)\(J_2\) XY model with the single-ion anisotropy

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The two-dimensional quantum-spin \(S=1\) square-lattice \(J_1\)\(J_2\) XY model with the single-ion anisotropy D was investigated numerically, placing an emphasis on the end-point singularity of the phase boundary separating the XY and paramagnetic phases in proximity to the fully frustrated point, \(J_2/J_1 \rightarrow 0.5^{-}\). We employed the exact diagonalization method to circumvent the negative sign problem of the quantum Monte Carlo method, and evaluated the fidelity susceptibility \(\chi _F\) as a probe to detect the phase transition. As a preliminary survey, for an intermediate value of \(J_2/J_1\), the D-driven XY-paramagnetic phase transition was investigated via the probe \(\chi _F\). It turned out that the criticality belongs to the 3D-XY universality class. Thereby, the \(\chi _F\) data were cast into the crossover-scaling formula with the properly scaled distance from the multi-critical point, \(0.5-J_2/J_1\). The set of multi-critical indices was obtained, and compared to those of the quantum Lifshitz criticality.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

My manuscript has no associated data. Data will be made available on reasonable request.

References

  1. S. Wessel, M. Troyer, Phys. Rev. Lett. 95, 127205 (2005)

    Article  ADS  Google Scholar 

  2. D. Heidarian, K. Damle, Phys. Rev. Lett. 95, 127206 (2005)

    Article  ADS  Google Scholar 

  3. J.-Y. Gan, J.-F. Gan, J. Phys. Soc. Jpn. 78, 094602 (2009)

    Article  ADS  Google Scholar 

  4. S.R. Hassan, L. de Medici, A.-M.S. Tremblay, Phys. Rev. B 76, 144420 (2007)

    Article  ADS  Google Scholar 

  5. M. Boninsegni, N. Prokof’ev, Phys. Rev. Lett. 95, 237204 (2005)

    Article  ADS  Google Scholar 

  6. M. Boninsegni, N.V. Prokof’ev, Rev. Mod. Phys. 84, 759 (2012)

    Article  ADS  Google Scholar 

  7. T. Matsubara, H. Matsuda, Prog. Theor. Phys. 16, 569 (1956)

    Article  ADS  Google Scholar 

  8. T. Roscilde, S. Haas, Phys. Rev. Lett. 99, 047205 (2007)

    Article  ADS  Google Scholar 

  9. Y.-C. Chen, M.-F. Yang, J. Phys. Commun. 1, 035009 (2017)

    Article  Google Scholar 

  10. W.-L. Tu, H.-K. Wu, T. Suzuki, J. Phys.: Condens. Matter 32, 455401 (2020)

    Google Scholar 

  11. S.-J. Dong, W. Liu, X.-F. Zhou, G.-C. Guo, Z.-W. Zhou, Y.-J. Han, L. He, Phys. Rev. B 96, 045119 (2017)

    Article  ADS  Google Scholar 

  12. H.T. Quan, Z. Song, X.F. Liu, P. Zanardi, C.P. Sun, Phys. Rev. Lett. 96, 140604 (2006)

    Article  ADS  Google Scholar 

  13. P. Zanardi, N. Paunković, Phys. Rev. E 74, 031123 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  14. H.-Q. Zhou, J.P. Barjaktarevi, J. Phys. A: Math. Theor. 41, 412001 (2008)

    Article  Google Scholar 

  15. W.-C. Yu, H.-M. Kwok, J. Cao, S.-J. Gu, Phys. Rev. E 80, 021108 (2009)

    Article  ADS  Google Scholar 

  16. W.-L. You, Y.-L. Dong, Phys. Rev. B 84, 174426 (2011)

    Article  ADS  Google Scholar 

  17. A. Uhlmann, Rep. Math. Phys. 9, 273 (1976)

    Article  ADS  Google Scholar 

  18. R. Jozsa, J. Mod. Opt. 41, 2315 (1994)

    Article  ADS  Google Scholar 

  19. A. Peres, Phys. Rev. A 30, 1610 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  20. T. Gorin, T. Prosen, T.H. Seligman, M. Žnidarič, Phys. Rep. 435, 33 (2006)

    Article  ADS  Google Scholar 

  21. A.F. Albuquerque, F. Alet, C. Sire, S. Capponi, Phys. Rev. B 81, 064418 (2010)

    Article  ADS  Google Scholar 

  22. M. Campostrini, M. Hasenbusch, A. Pelissetto, E. Vicari, Phys. Rev. B 74, 144506 (2006)

    Article  ADS  Google Scholar 

  23. E. Burovski, J. Machta, N. Prokof’ev, B. Svistunov, Phys. Rev. B 74, 132502 (2006)

    Article  ADS  Google Scholar 

  24. A. Dutta, J.K. Bhattacharjee, B.K. Chakrabarti, Eur. Phys. J. B 3, 97 (1998)

    Article  ADS  Google Scholar 

  25. R.F. Bishop, P.H.Y. Li, R. Darradi, J. Richter, C.E. Campbell, J. Phys.: Condens. Matter 20, 415213 (2008)

    Google Scholar 

  26. A.S.T. Pires, J. Mag. Mag. Mat. 323, 1977 (2011)

    Article  ADS  Google Scholar 

  27. E.K. Riedel, F. Wegner, Z. Phys. 225, 195 (1969)

    Article  ADS  Google Scholar 

  28. P. Pfeuty, D. Jasnow, M.E. Fisher, Phys. Rev. B 10, 2088 (1974)

    Article  ADS  Google Scholar 

  29. R.M. Hornreich, M. Luban, S. Shtrikman, Phys. Rev. Lett. 35, 1678 (1975)

    Article  ADS  Google Scholar 

  30. A. Dutta, B.K. Chakrabarti, J.K. Bhattacharjee, Phys. Rev. B 55, 5619 (1997)

    Article  ADS  Google Scholar 

  31. H.W. Diehl, M. Shpot, Phys. Rev. B 62, 12338 (2000)

    Article  ADS  Google Scholar 

  32. M. Shpot, H.W. Diehl, Nucl. Phys. B 612, 340 (2001)

    Article  ADS  Google Scholar 

  33. M.M. Leite, Phys. Rev. B 67, 104415 (2003)

    Article  ADS  Google Scholar 

  34. C. Mergulhão Jr., C.E.I. Carneiro, Phys. Rev. B 58, 6047 (1998)

    Article  ADS  Google Scholar 

  35. C. Mergulhão Jr., C.E.I. Carneiro, Phys. Rev. B 59, 13954 (1999)

    Article  ADS  Google Scholar 

  36. R.F. Bishop, P.H.Y. Li, R. Darradi, J. Schulenburg, J. Richter, Phys. Rev. B 78, 054412 (2008)

    Article  ADS  Google Scholar 

  37. J. Oitmaa, J. Phys. A: Math. Theor. 53, 085001 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Kalz, A. Honecker, S. Fuchs, and T. Pruschke, Phys. Rev. B 83 (2011) 174519; ibid. 84 (2011) 219902

  39. A.W. Sandvik, AIP Conf. Proc. 1297, 135 (2010)

    Article  ADS  Google Scholar 

  40. Y. Nishiyama, J. Stat. Mech.: Theory and Experiment (2021) 033103

  41. Y. Nishiyama, J. Stat. Mech.: Theory and Experiment (2022) 033102

  42. A.R. Moura, J. Mag. Mag. Mat. 369, 62 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science (Grant No. 20K03767).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Nishiyama.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishiyama, Y. End-point singularity of the XY-paramagnetic phase boundary for the \((2+1)\)D \(S=1\) square-lattice \(J_1\)\(J_2\) XY model with the single-ion anisotropy. Eur. Phys. J. B 96, 96 (2023). https://doi.org/10.1140/epjb/s10051-023-00566-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00566-3

Navigation