Skip to main content
Log in

Spectroscopic investigation of neodymium and copper co-doped phosphate glass incorporating plasmonic nanoparticles

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Seeking improvements in the emission from Nd3+ ions in dielectric hosts is currently a topic of interest for applications in laser materials and solar spectral conversion. In this work, the spectroscopic properties of neodymium and copper co-doped phosphate glass were examined focusing on the impact of plasmonic Cu nanoparticles (NPs). Material preparation was achieved by melting and heat treatment processes wherein Nd2O3 (2 mol%) alongside CuO/SnO as redox couple (10 mol%) were added to BaO:P2O5 glass. Characterizations were then performed by dilatometry, UV–Vis-NIR spectrophotometry, X-ray diffraction (XRD), Raman scattering, and photoluminescence (PL) spectroscopy. From dilatometry, the coefficient of thermal expansion and glass transition & softening temperatures of the melt-quenched glass were estimated. Absorption spectroscopy revealed the surface plasmon resonance band of Cu NPs around 573 nm in heat-treated glass, while XRD allowed to estimate mean NP size around 30.0 nm. The Raman spectroscopy appraisal indicated a depolymerization effect of the glass induced by dopants, however, supporting no significant structural alterations upon Cu NP inclusion. The Nd3+ PL assessment which encompassed up-conversion and near-infrared emission demonstrated consistent PL quenching in the plasmonic glass, while the lifetimes for the Nd3+ 4F3/2 emitting state were akin to the melt-quenched precursor. The most favorable conditions for using the Nd3+ emission for applications were then achieved in the melt-quenched glass rather than the nanocomposite. It is suggested that energy transfer processes from Nd3+ ions to Cu NPs primarily induce the PL quenching which supersedes any plasmonic local field enhancement effects.

Graphical Abstract

Luminescent down-shifting (LDS) and up-conversion (UC) processes relevant for solar spectral conversion were evaluated in Cu/Nd co-doped phosphate glass and plasmonic nanocomposite (glass spectra-solid traces; AM1.5G solar spectrum-dash dot green curve; c-Si cell response-dash dot dot blue curve)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and from the corresponding author upon reasonable request.

References

  1. P. Ramprasad, Ch. Basavapoornima, S.R. Depuru, C.K. Jayasankar, Spectral investigations of Nd3+:Ba(PO3)2+La2O3 glasses for infrared laser gain media applications. Opt. Mater. 129, 112482 (2022)

    Article  Google Scholar 

  2. M. Muñoz-Quiñonero, J. Azkargorta, I. Iparraguirre, R.J. Jiménez-Riobóo, G. Tricot, C. Shao, F. Muñoz, J. Fernández, R. Balda, Dehydroxylation processing and lasing properties of a Nd alumino-phosphate glass. J. Alloys Compd. 896, 163040 (2022)

    Article  Google Scholar 

  3. A. Madhu, M. Al-Dossari, N.S. Abd El-Gawaad, D. Gelija, K.N. Ganesha, N. Srinatha, Structural, optical and luminescence properties of Nd3+ ions in B2O3+SiO2+TeO2+Na2O glasses. Opt. Mater. 136, 113436 (2023)

    Article  Google Scholar 

  4. J.H. Campbell, J.S. Hayden, A. Marker, High-power solid-state lasers: a laser glass perspective. Int. J. Appl. Glass Sci. 2, 3–29 (2011)

    Article  Google Scholar 

  5. A.C. Erlandson, S.M. Aceves, A.J. Bayramian, A.L. Bullington, R.J. Beach, C.D. Boley, J.A. Caird, R.J. Deri, A.M. Dunne, D.L. Flowers et al., Comparison of Nd:phosphate glass, Yb:YAG and Yb:S-FAP laser beamlines for laser inertial fusion energy (LIFE). Opt. Mater. Express 1, 1341–1352 (2011)

    Article  ADS  Google Scholar 

  6. T.-M. Usher-Ditzian, SCHOTT laser glass. Opt. Mater. Express 12, 4399–4417 (2022)

    Article  ADS  Google Scholar 

  7. J.-C.G. Bünzli, S.V. Eliseeva, Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. J. Rare Earths 28, 824–842 (2010)

    Article  Google Scholar 

  8. A. Ghazy, M. Safdar, M. Lastusaari, H. Savin, M. Karppinen, Advances in upconversion enhanced solar cell performance. Sol. Energy Mater. Sol. Cells 230, 111234 (2021)

    Article  Google Scholar 

  9. H. Singh, T. Singh, D. Singh, V. Bhatia, D. Kumar, S. Pal Singh, Up-conversion and downconversion studies of Nd3+ doped borophosphate glasses. Opt. Mater. 137, 113586 (2023)

    Article  Google Scholar 

  10. R.A.S. Ferreira, S.F.H. Correia, A. Monguzzi, X. Liu, F. Meinardi, Spectral converters for photovoltaics—What’s ahead. Mater. Today 33, 105–121 (2020)

    Article  Google Scholar 

  11. A. Luque, S. Hegedus, Handbook of photovoltaic science and engineering (John Wiley and Sons Ltd, England, 2003)

    Book  Google Scholar 

  12. G. Schubert, F. Huster, P. Fath, Physical understanding of printed thick-film front contacts of crystalline Si solar cells—Review of existing models and recent developments. Sol. Energy Mater. Sol. Cells 90, 3399–3406 (2006)

    Article  Google Scholar 

  13. G. Shao, C. Lou, J. Kang, H. Zhang, Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells. Appl. Phys. Lett. 107, 253904 (2015)

    Article  ADS  Google Scholar 

  14. A. Bouajaj, S. Belmokhtar, M.R. Britel, C. Armellini, B. Boulard, F. Belluomo, A. Di Stefano, S. Polizzi, A. Lukowiak, M. Ferrari, F. Enrichi, Tb3+/Yb3+ codoped silica–hafnia glass and glass–ceramic waveguides to improve the efficiency of photovoltaic solar cells. Opt. Mater. 52, 62–68 (2016)

    Article  ADS  Google Scholar 

  15. B.S. Richards, Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Sol. Energy Mater. Sol. Cells 90, 2329–2337 (2006)

    Article  Google Scholar 

  16. E. Klampaftis, D. Ross, K.R. McIntosh, B.S. Richards, Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review. Sol. Energy Mater. Sol. Cells 93, 1182–1194 (2009)

    Article  Google Scholar 

  17. X. Huang, S. Han, W. Huang, X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42, 173–201 (2013)

    Article  Google Scholar 

  18. R. Reisfeld, New developments in luminescence for solar energy utilization. Opt. Mater. 32, 850–856 (2010)

    Article  ADS  Google Scholar 

  19. S. Gómez, I. Urra, R. Valiente, F. Rodríguez, Spectroscopic study of Cu2+/Cu+ doubly doped and highly transmitting glasses for solar spectral transformation. Sol. Energy Mater. Sol. Cells 95, 2018–2022 (2011)

    Article  Google Scholar 

  20. E. Cattaruza, M. Mardegan, T. Pregnolato, G. Ungaretti, G. Aquilanti, A. Quaranta, G. Battaglin, E. Trave, Ion exchange doping of solar cell coverglass for sunlight down-shifting. Sol. Energy Mater. Sol. Cells 130, 272–280 (2014)

    Article  Google Scholar 

  21. Y. Fujimoto, M. Nakatsuka, Spectroscopic properties and quantum yield of Cu-doped SiO2 glass. J. Lumin. 75, 213–219 (1997)

    Article  Google Scholar 

  22. J.A. Jiménez, M. Sendova, Near-UV sensitized 1.06 µm emission of Nd3+ ions via monovalent copper in phosphate glass. Mater. Chem. Phys. 162, 425–430 (2015)

    Article  Google Scholar 

  23. M.R. Dousti, Efficient infrared-to-visible upconversion emission in Nd3+-doped PbO-TeO2 glass containing silver nanoparticles. J. Appl. Phys. 114, 113105 (2013)

    Article  ADS  Google Scholar 

  24. D.S. da Silva, T.A.A. de Assumpção, L.R.P. Kassab, C.B. de Araújo, Frequency upconversion in Nd3+ doped PbO–GeO2 glasses containing silver nanoparticles. J. Alloys Compd. 586, S516–S519 (2014)

    Article  Google Scholar 

  25. T. Som, B. Karmakar, Nano Au enhanced upconversion in dichroic Nd3+:Au–antimony glass nanocomposites. Solid State Sci. 11, 1044–1051 (2009)

    Article  Google Scholar 

  26. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A.J. Ikushima, T. Tokisaki, A. Nakamura, Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles. J. Opt. Soc. Am. B 11, 1236–1243 (1994)

    Article  ADS  Google Scholar 

  27. J.A. Jiménez, Thermal effects on the surface plasmon resonance of Cu nanoparticles in phosphate glass: Impact on Cu+ luminescence. Nanoscale Adv. 1, 1826–1832 (2019)

    Article  ADS  Google Scholar 

  28. J.A. Jiménez, S. Lysenko, Scattering-promoted plasmonic enhancement of Eu3+ photoluminescence in dichroic Cu nanocomposite glass. Appl. Phys. B 127, 33 (2021)

    Article  ADS  Google Scholar 

  29. G.E. Malashkevich, A.G. Bazylev, A.L. Blinov, M.A. Borik, A.P. Voĭtovich, V.S. Kalinov, V.N. Tadéush, Sensitization of neodymium ion luminescence by divalent tin. Sov. J. Quantum Electron. 21, 601–605 (1991)

    Article  ADS  Google Scholar 

  30. C.B. Honsberg and S.G. Bowden, Photovoltaics Education Website, www.pveducation.org, (accessed 06/2022).

  31. J.A. Jiménez, C. Zhao, Optical absorption, 31P NMR, and photoluminescence spectroscopy study of copper and tin co-doped barium–phosphate glasses. Mater. Chem. Phys. 147, 469–475 (2014)

    Article  Google Scholar 

  32. U. Kreibig, M. Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995)

    Book  Google Scholar 

  33. J.A. Jiménez, In situ-monitored enhancement and quenching effect of Cu nanoclusters on Sm3+ photoluminescence in glass. Phys. Lett. A 384, 126117 (2020)

    Article  Google Scholar 

  34. J.A. Jiménez, M. Sendova, Near-IR photoluminescence of Pr/Cu/Sn tridoped phosphate glass: nonplasmonic material system versus plasmonic nanocomposite. J. Electron. Mater. 44, 1175–1180 (2015)

    Article  ADS  Google Scholar 

  35. J.A. Jiménez, Monovalent copper-mediated UV to NIR luminescence down-shifting in Yb3+-doped glass. J. Mater. Chem. C 10, 15466–15473 (2022)

    Article  Google Scholar 

  36. J.A. Jiménez, Pd nanometal inclusion in phosphate glass via PdO and Si: Impact on Sm3+ photoluminescence. Phys. Lett. A 462, 128666 (2023)

    Article  Google Scholar 

  37. J.E. Pemberton, L. Latifzadeh, J.P. Fletcher, S.H. Risbud, Raman spectroscopy of calcium phosphate glasses with varying CaO modifier concentrations. Chem. Mater. 3, 195–200 (1991)

    Article  Google Scholar 

  38. G. Le Saoût, P. Simon, F. Fayon, A. Blin, Y. Vaills, Raman and infrared study of (PbO)x(P2O5)(1–x) glasses. J. Raman Spectrosc. 33, 740–746 (2002)

    ADS  Google Scholar 

  39. L. Baia, D. Muresan, M. Baia, J. Popp, S. Simon, Structural properties of silver nanoclusters–phosphate glass composites. Vib. Spectrosc. 43, 313–318 (2007)

    Article  Google Scholar 

  40. J.A. Jiménez, M. Sendova, C. Zhao, Efficient energy transfer and enhanced near-IR emission in Cu+/Nd3+-activated aluminophosphate glass. J. Am. Ceram. Soc. 98, 3087–3093 (2015)

    Article  Google Scholar 

  41. J.A. Jiménez, Vibrational spectroscopy and thermal/dilatometric characterizations of Fe-containing bio-relevant glasses. Inorg. Chem. Commun. 151, 110611 (2023)

    Article  Google Scholar 

  42. R. Rajaramakrishna, S. Karuthedath, R.V. Anavekar, H. Jain, Nonlinear optical studies of lead lanthanum borate glass doped with Au nanoparticles. J. Non-Cryst. Solids 358, 1667–1672 (2012)

    Article  ADS  Google Scholar 

  43. G. Venkateswara Rao, H.D. Shashikala, Optical, dielectric and mechanical properties of silver nanoparticle embedded calcium phosphate glass. J. Non-Cryst. Solids 402, 204–209 (2014)

    Article  ADS  Google Scholar 

  44. J.A. Jiménez, Spectroscopic investigation of the influence of Cu+ ions and plasmonic Cu particles on Ho3+ luminescence in phosphate glass. Chem. Phys. 541, 111045 (2021)

    Article  Google Scholar 

  45. J.A. Jiménez, Temperature dependent spectroscopic properties of Cu+ and Dy3+ co-doped phosphate glass: Band gap analysis and Cu nanocluster-enhanced Dy3+ luminescence. ChemPhysChem 20, 399–404 (2019)

    Article  Google Scholar 

  46. J.A. Jiménez, Excitation-dependent enhancement and quenching of the 1.54 μm emission from Er3+ ions in dichroic Cu nanocomposite glass. Solid State Commun. 321, 114046 (2020)

    Article  Google Scholar 

  47. Y. Xu, S. Li, L. Hu, W. Chen, Effect of copper impurity on the optical loss and Nd3+ nonradiative energy loss of Nd-doped phosphate laser glass. J. Rare Earths 29, 614–617 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JAJ: conceptualization, visualization, methodology, investigation, formal analysis, writing—original draft, reviewing and editing, supervision.

Corresponding author

Correspondence to José A. Jiménez.

Ethics declarations

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez, J.A. Spectroscopic investigation of neodymium and copper co-doped phosphate glass incorporating plasmonic nanoparticles. Eur. Phys. J. B 96, 92 (2023). https://doi.org/10.1140/epjb/s10051-023-00564-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00564-5

Navigation