Skip to main content
Log in

Significant suppression of segregation in Schelling’s metapopulation model with star-type underlying topology

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Segregation phase transition has long been considered a robust phenomenon in celebrated Schelling’s segregation model, the degree of segregation remains largely unchanged even with different underlying topologies. However, in this study, we have observed that a significant suppression of segregation can be achieved by modifying agents’ migration paths in a Schelling’s metapopulation model with a simple step utility function, based on an extremely heterogeneous star-type underlying complex network. We find that the degree of suppression is occupancy density dependent, and the effect is even more pronounced at higher occupancy densities. To explore the impact of this modification of migration paths, we suggest a random adding-link mechanism as well. We have observed that as the adding-link probability increases from zero to unity, the significantly suppressed segregation phase at lower probability eventually emerges. Moreover, we identified a scaling law of the average stationary interface density versus the re-scaled adding-link probability.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

Data and source code associated in the manuscript are available upon request.

References

  1. G. Bianconi, A. Arenas, J. Biamonte, L.D. Carr, B. Kahng, J. Kertesz, J. Kurths, L. Lü, C. Masoller, A.E. Motter, M. Perc, F. Radicchi, R. Ramaswamy, F.A. Rodrigues, M. Sales-Pardo, M.S. Miguel, S. Thurner, T. Yasseri, Complex systems in the spotlight: next steps after the 2021 nobel prize in physics. J. Phys.: Complex. 4(1), 010201 (2023)

    ADS  Google Scholar 

  2. C. Castellano, S. Fortunato, V. Loreto, Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591–646 (2009)

    Article  ADS  Google Scholar 

  3. M. Barthelemy, The statistical physics of cities. Nat. Rev. Phys. 1, 406–415 (2019)

    Article  Google Scholar 

  4. M. Jusup, P. Holme, M. Kanazawa, K. Takayasu, I. Romić, Z. Wang, S. Gec̆ek, T. Lipić, B. Podobnik, L. Wang, W. Luo, T. Klanjs̆c̆ek, J. Fan, S. Boccaletti, M. Perc, Social physics. Phys. Rep. 948, 1–148 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  5. T.C. Schelling, Dynamic models of segregation. J. Math. Soc. 1(2), 143–186 (1971)

    Article  MATH  Google Scholar 

  6. T.C. Schelling, Micromotives and Macrobehavior (Norton, New York, 1978)

    Google Scholar 

  7. M.C. Cross, P.C. Hohenberg, Pattern formation outside of equilibrium. Rev. Mod. Phys. 65(3), 851–1112 (1993)

    Article  ADS  MATH  Google Scholar 

  8. A.J. Laurie, N.K. Jaggi, Role of “vision’’ in neighbourhood racial segregation: a variant of the Schelling segregation model. Urban Stud. 40(13), 2687–2704 (2003)

    Article  Google Scholar 

  9. W. Clark, M. Fossett, Understanding the social context of the Schelling segregation model. Proc. Natl. Acad. Sci. USA 105(11), 4109–4114 (2008)

    Article  ADS  Google Scholar 

  10. M. Fossett, D.R. Dietrich, Effects of city size, shape, and form, and neighborhood size and shape in agent-based models of residential segregation: Are schelling-style preference effects robust? Environ. Plann. B. Plann. Des. 36(1), 149–169 (2009)

    Article  Google Scholar 

  11. G. Fagiolo, M. Valente, N.J. Vriend, Segregation in networks. J. Econ. Behav. Organ. 64(3), 316–336 (2007)

    Article  MATH  Google Scholar 

  12. R. Pancs, N.J. Vriend, Schelling’s spatial proximity model of segregation revisited. J. Public Econ. 91(1), 1–24 (2007)

    Article  Google Scholar 

  13. S. Grauwin, F. Goffette-Nagot, P. Jensen, Dynamic models of residential segregation: an analytical solution. J. Public Econ. 96(1), 124–141 (2012)

    Article  Google Scholar 

  14. M. Pollicott, H. Weiss, The dynamics of Schelling-type segregation models and a nonlinear graph Laplacian variational problem. Adv. Appl. Math. 27(1), 17–40 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Gerhold, L. Glebsky, C. Schneider, H. Weiss, B. Zimmermann, Computing the complexity for Schelling segregation models. Commun. Nonlinear Sci. Numer. Simulat. 13(10), 2236–2245 (2008)

  16. R. Durrett, Y. Zhang, Exact solution for a metapopulation version of Schelling’s model. Proc. Natl. Acad. Sci. USA 111(39), 14036–14041 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. D. Vinkovic, A. Kirman, A physical analogue of the Schelling model. Proc. Natl. Acad. Sci. USA 103(51), 19261–19265 (2006)

    Article  ADS  Google Scholar 

  18. D. Stauffer, S. Solomon, Ising, Schelling and self-organising segregation. Eur. Phys. J. B 57(4), 473–479 (2007)

    Article  ADS  Google Scholar 

  19. L. Gauvin, J. Vannimenus, J.-P. Nadal, Phase diagram of a Schelling segregation model. Eur. Phys. J. B 70(2), 293–304 (2009)

    Article  ADS  Google Scholar 

  20. L. Gauvin, J.-P. Nadal, J. Vannimenus, Schelling segregation in an open city: a kinetically constrained blume-emery-griffiths spin-1 system. Phys. Rev. E 81, 066120 (2010)

    Article  ADS  Google Scholar 

  21. T. Rogers, A.J. McKane, Jamming and pattern formation in models of segregation. Phys. Rev. E 85, 041136 (2012)

    Article  ADS  Google Scholar 

  22. Y. Gandica, F. Gargiulo, T. Carletti, Can topology reshape segregation patterns? Chaos Soliton. Fract. 90, 46–54 (2016)

    Article  ADS  MATH  Google Scholar 

  23. G. Su, Q. Xiong, Y. Zhang, Intriguing effects of underlying star topology in Schelling’s model with blocks. Phys. Rev. E 102, 012317 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  24. N.G. Domic, E. Goles, S. Rica, Dynamics and complexity of the Schelling segregation model. Phys. Rev. E 83, 056111 (2011)

    Article  ADS  Google Scholar 

  25. L. Dall’Asta, C. Castellano, M. Marsili, Statistical physics of the Schelling model of segregation. J. Stat. Mech.: Theory Exp. L07002, (2008)

  26. S. Grauwin, E. Bertin, R. Lemoy, P. Jensen, Competition between collective and individual dynamics. Proc. Natl. Acad. Sci. USA 106(49), 20622–20626 (2009)

    Article  ADS  Google Scholar 

  27. P. Jensen, T. Matreux, J. Cambe, H. Larralde, E. Bertin, Giant catalytic effect of altruists in Schelling’s segregation model. Phys. Rev. Lett. 120, 208301 (2018)

    Article  ADS  Google Scholar 

  28. P. Erdős, A. Rényi, On random graphs. I. Publ. Math. (Debrecen) 6, 290–297 (1959)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Natural Science Foundation of China via Grant No. 11505115.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the analytical and numerical calculations contained in the present manuscript.

Corresponding authors

Correspondence to Guifeng Su or Yi Zhang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, G., Zhang, Y. Significant suppression of segregation in Schelling’s metapopulation model with star-type underlying topology. Eur. Phys. J. B 96, 91 (2023). https://doi.org/10.1140/epjb/s10051-023-00560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00560-9

Navigation