Skip to main content
Log in

The electronic structure and elastic properties of Ca doped Ti2Ni alloy

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The lattice parameters, formation energy and electronic structure as well as elastic property and Debye temperature of Ca-doped Ti2Ni alloy have been calculated. The results show that the structural stability of Ca replacing the Ti atomic site is more stable than that of Ca replacing the Ni atom. This is consistent with the calculated energy band structure and electronic density of the state. The elastic properties approximated by Voigt–Reuss–Hill formulae show that the ratio of bulk modulus to shear modulus and Poisson’s ratio of Ca replacing Ni system are greater than that of Ca replacing Ti system, the interstitial doping system and the pure Ti2Ni alloy, implying that Ca replacing Ni is more malleable and the ductility of Ti2Ni alloy can be tailored by Ca doping. The hardness and Debye temperature also indicate that both ratios of Ca replacing Ti system are higher than that of Ca replacing Ni system.

Graphical abstract

Young’s modulus, shear modulus and Poisson’s ratio of Ca16Ti48Ni32

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. G. Gerstein, G.S. Firstov, T.A. Kosorukova, Yu.N. Koval, H.J. Maier, Development of B2 shape memory intermetallics beyond NiAl, CoNiAl and CoNiGa. Shape Mem. Superelast. 4(3), 360–368 (2018)

    Article  Google Scholar 

  2. P. Salwa, T. Goryczka, Crystallization of mechanically alloyed Ni50Ti50 and Ti50Ni25Cu25 shape memory alloys. J. Mater. Eng. Perform. 29(5), 2848–2852 (2020)

    Article  Google Scholar 

  3. M. Hiromichi, S. Hirotaka, S. Masayuki, Y.M. Yoko, Improvement of high-temperature shape-memory effect by multi-component alloying for TiPd alloys. Mater. Trans. 60(11), 2282–2291 (2019)

    Article  Google Scholar 

  4. Q.C. Fan, Y. Zhang, Y.H. Zhang, Y.Y. Wang, E.H. Yan, S.K. Huang, Y.H. Wen, Influence of Ni/Ti ratio and Nb addition on martensite transformation behavior of NiTiNb alloys. J. Alloy Compd. 790, 1167–1176 (2019)

    Article  Google Scholar 

  5. J. Bai, S.F. Shi, J.L. Wang, S. Wang, X. Zhao, First-principles calculations of phase stability and magnetic properties of Ni–Mn–Ga–Ti ferromagnetic shape memory alloys. Acta Metall. Sin. 55(3), 369–375 (2019)

    Google Scholar 

  6. H.L. Baker, The Development and Processing of Nickel Titanium Shape Memory Alloys Containing Palladium Using Selective Laser Melting (University of Birmingham, Birmingham, 2019)

    Google Scholar 

  7. S. Ashbli, C.C. Menzemer, On the fatigue behavior of nanocrystalline NiTi shape memory alloys: a review. J. Nanomed. Nanotechnol. 10(529), 1–7 (2019)

    Google Scholar 

  8. K. Mehta, K. Gupta, Briefs in applied sciences and technology: fabrication and processing of shape memory alloys. in ed. by J.P. Davim, P. Aveiro (Springer, Cham, 2019), pp. 1–7

  9. V. Senthilkumar, C. Velmurugan, Spark plasma sintering of materials: spark plasma sintering of NiTi shape memory alloy, in ed. by P. Cavaliere (Springer, Cham, 2019), pp. 635–670

  10. E. Sakher, N. Loudjani, M. Benchiheub, M. Bououdina, Influence of milling time on structural and microstructural parameters of Ni50Ti50 prepared by mechanical alloying using Rietveld analysis. J. Nanomater. 2018, 1–11 (2018)

    Article  Google Scholar 

  11. M.K. Ibrahim, E. Hamzah, S. Saud, E.M. Nazim, A. Bahador, Parameter optimization of microwave sintering porous Ti–23%Nb shape memory alloys for biomedical applications. Trans. Nonferr. Met. Soc. China 28(4), 700–710 (2018)

    Article  Google Scholar 

  12. M. Kilic, S. Bati, İ Kirik, Production of intermetallic FGM. Middle East J. Tech. 2(1), 118–135 (2017)

    Google Scholar 

  13. B. Zhang, Z.J. Zhang, T.L. Zhao, D. Zhang, J. Cheng, W. Wang, K. Qiao, Y. Yang, K.S. Wang, Effect of temperature on the interfacial evolution of Ti/Ni multi layered composites fabricated by ARB. J. Alloy Compd. 803, 265–276 (2019)

    Article  Google Scholar 

  14. H.Y. Kim, T. Jinguu, T. Namb, S. Miyazaki, Cold workability and shape memory properties of novel Ti–Ni–Hf–Nb high-temperature shape memory alloys. Acta Mater. 65, 846–849 (2011)

    Google Scholar 

  15. H.Y. Kim, T. Fukushima, P.J.S. Buenconsejo, T. Nam, S. Miyazaki, Martensitic transformation and shape memory properties of Ti–Ta–Sn high temperature shape memory alloys. Mater. Sci. Eng. A 528, 7238–7246 (2011)

    Article  Google Scholar 

  16. G.S. Bigelow, S.A. Padula, A. Garg, D. Gaydosh, R.D. Noebe, Characterization of ternary NiTiPd high-temperature shape-memory alloys under load-biased thermal cycling. Metall. Mater. Trans. A 41(12), 3065–3079 (2010)

    Article  Google Scholar 

  17. V. Sampath, R. Srinithi, S. Santosh, P.P. Sarangi, J.S. Fathima, The effect of quenching methods on transformation characteristics and microstructure of an NiTiCu shape memory alloy. Trans. Indian Inst. Met. 73(6), 1481–1488 (2020)

    Article  Google Scholar 

  18. M.I. Khan, H.Y. Kim, T. Nam, S. Miyazaki, Formation of nanoscaled precipitates and their effects on the high-temperature shape-memory characteristics of a Ti50Ni15Pd25Cu10 alloy. Acta Mater. 60, 5900–5913 (2012)

    Article  ADS  Google Scholar 

  19. P.J.S. Buenconsejo, H.Y. Kim, S. Miyazaki, Novel-TiTaAl alloys with excellent cold workability and a stable high-temperature shape memory effect. Scr. Mater. 64, 1114–1117 (2011)

    Article  Google Scholar 

  20. Y.Y. Mitarai, TiPd- and TiPt-based high-temperature shape memory alloys: a review on recent advances. Metals 10(11), 1531–1550 (2020)

    Article  Google Scholar 

  21. H. Sato, H.Y. Kim, M. Shimojo, Y. Yamabe-Mitarai, Training effect on microstructure and shape recovery in Ti–Pd–Zr alloys. Mater. Trans. 58(10), 1479–1486 (2017)

    Article  Google Scholar 

  22. T.A. Kosorukova, G.S. Firstov, Y.N. Koval, J.V. Humbeeck, B. Zhuravlev, Phase transformations and shape memory behavior in Ni3Ta-based intermetallics. Mater. Today Proc. 2(3), 793–796 (2015)

    Article  Google Scholar 

  23. C.H. Chen, Y.J. Chen, Shape memory characteristics of (TiZrHf)50Ni25Co10Cu15 high entropy shape memory alloy. Scr. Mater. 162, 185–189 (2019)

    Article  Google Scholar 

  24. D. Canadinc, W. Trehern, J. Ma, I. Karaman, F. Sun, Z. Chaudhry, Ultra-high temperature multi-component shape memory alloys. Scr. Mater. 158, 83–87 (2019)

    Article  Google Scholar 

  25. M. Wang, S.Y. Jiang, Y.Q. Zhang, Phase transformation, twinning, and detwinning of NiTi shape-memory alloy subject to a shock wave based on molecular-dynamics simulation. Materials 11, 2334 (2018)

    Article  ADS  Google Scholar 

  26. S.T. Yan, Z.Y. Jiang, First principles study of the effect of Cu doping on the martensitic transformation of TiNi alloy. Acta Phys. Sin. 66, 130501 (2017)

    Article  Google Scholar 

  27. D. Toprek, J.B. Cavor, V. Koteski, Ab initio studies of the structural, elastic, electronic and thermal properties of NiTi2 intermetallic. J. Phys. Chem. Solids 85, 197–205 (2015)

    Article  ADS  Google Scholar 

  28. L.Q. Ma, X.Y. Zhao, Y. Ding, X.D. Shen, Progress in A2B-type Ti2Ni-based hydrogen storage alloy. J. Nanjing Univ. Technol. 32, 106–110 (2010)

    Google Scholar 

  29. P. Wang, J. Li, C.Z. Ling, L. Yang, L. Peng, Y. Wang, C. Xiao, J.C. Chen, First-principles calculations of electronic structure and mechanical properties of Ti–Ni intermetallic compounds. Chin. J. Nonferr. Met. 26, 2546–2554 (2016)

    Google Scholar 

  30. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials 220(5–6), 567–570 (2005)

  31. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717–2744 (2002)

    Article  ADS  Google Scholar 

  32. R. Zhang, D. Xie, Y.X. Leng, F.J. Jing, N. Huang, First principle study on bonding characteristics and elastic properties of NiTi alloy (B2, B19′, R phase). Mater. Rep. 33, 383–388 (2019)

    Google Scholar 

  33. S.A. Khandy, J.D. Chai, Thermoelectric properties, phonon, and mechanical stability of new half-metallic quaternary Heusler alloys: FeRhCrZ (Z = Si and Ge). J. Appl. Phys. 127(16), 165102 (2020)

    Article  ADS  Google Scholar 

  34. S.A. Khandy, S.G. Vaid, I. Islam, A.K. Hafiz, J.D. Chai, Understanding the stability concerns and electronic structure of CsYbX3 (X=Cl, Br) halidoperovskites for optoelectronic applications. J. Alloy Compd. 867, 158966 (2021)

    Article  Google Scholar 

  35. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999)

    Article  ADS  Google Scholar 

  36. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  37. M.H. Mueller, H.W. Knott, The crystal structures of Ti2Cu, Ti2Ni, Ti4Ni2O, and Ti4Cu2O. Trans. Am. Inst. Metall. Eng. 227, 1–22 (1963)

    Google Scholar 

  38. B. Cekic, B. Prelesnik, S. Koirki, D. Rodic, M. Manasijevic, N. Ivanovic, Refinement of the crystal structure of Hf2Fe. J. Less Common Met. 171(1), 9–15 (1991)

    Article  Google Scholar 

  39. L.M. Huang, First-principles study of effects of the non-metallic elements on the mechanical properties in Ni and Ni3Al (Tsinghua University, Beijing, 2018)

    Google Scholar 

  40. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. 65(5), 349–354 (1952)

    Article  ADS  Google Scholar 

  41. D. Hong, W. Zeng, Z. Xin, F.S. Liu, B. Tang, Q.J. Liu, First-principles calculations of structural, mechanical and electronic properties of TiNi–X (X=C, Si, Ge, Sn, Pb) alloys. Int. J. Mod. Phys. B 33(16), 1–13 (2019)

    Article  Google Scholar 

  42. A.E. Carlsson, P.J. Meschter, Relative stability of Ll2, DO22, and DO23 structures in MA13 compounds. J. Mater. Res. 4(5), 1060–1063 (1989)

    Article  ADS  Google Scholar 

  43. O.L. Anderson, A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24(7), 909–917 (1963)

    Article  ADS  Google Scholar 

  44. C. Lee, X. Gonze, Ab initio calculation of the thermodynamic properties and atomic temperature factors of SiO2 α-quartz and stishovite. Phys. Rev. B 51(13), 8610 (1995)

    Article  ADS  Google Scholar 

  45. G. Grimvall, Thermophysical properties of materials (The University of Hong Kong, Pokfulam, Hong Kong, 1986)

    Google Scholar 

  46. S.B. Palmer, E.W. Lee, The elastic constants of chromium. Philos. Mag.: J. Theor. Exp. Appl. Phys. 24(188), 311–318 (1971)

    Article  Google Scholar 

  47. S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45(367), 823–843 (2009)

    Article  Google Scholar 

  48. R.G. Zhang, N.H. Luo, Q. Zhou, Q. Chen, B. Huang, S.R. Sun, G.Q. Sun, First principle calculation study on influence of metal element doping on TiN performance. Hot Work. Technol. 50, 103–107 (2021)

    Google Scholar 

  49. Y. Gupta, M.M. Sinha, S.S. Verma, Probing the elastic, mechanical and thermodynamic properties of Weyl semimetals ZrX (X = S and Te). Pramana 96(2), 1–17 (2022)

    Article  Google Scholar 

  50. R. Gaillac, P. Pullumbi, F.X. Coudert, ELATE: an open-source online application for analysis and visualization of elastic tensors. J. Phys.: Condens. Matter 28, 275201 (2016)

    Google Scholar 

  51. M. Faghihnasiri, J. Beheshtian, F. Shayeganfar, R. Shahsavari, Phase transition and mechanical properties of cesium bismuth silver halide double perovskites (Cs2AgBiX6, X=Cl, Br, I): a DFT approach. Phys. Chem. Chem. Phys. 22, 5959–5968 (2020)

    Article  Google Scholar 

  52. C.H. Chie, Y.C. Feng, C.W. Hwa, First-principles density functional calculation of mechanical, thermodynamic and electronic properties of CuIn and Cu2In crystal. J. Alloy. Compd. 546, 286–295 (2013)

    Article  Google Scholar 

  53. V. Mankad, N. Rathod, S.D. Gupta, S.K. Gupta, P.K. Jha, A first principles investigation on the structure, elastic, electronic and phonon properties. Mater. Chem. Phys. 129, 816–822 (2011)

    Article  Google Scholar 

  54. S.A. Khandy, I. Islam, D.C. Gupta, A. Laref, Predicting the electronic structure, magnetism, and transport properties of new Co–based Heusler alloys, Int. J. Energy Res. 1–8 (2018). https://doi.org/10.1002/er.4182

  55. S.A. Khandy, J.D. Chai, Novel half-metallic L21 structured full-Heusler compound for promising spin-tronic applications: a DFT-based computer simulation. J. Magn. Magn. Mater. 487, 165289 (2019)

    Article  Google Scholar 

  56. S.A. Khandy, J.D. Chai, Strain engineering of electronic structure, phonon, and thermoelectric properties of p-type half-Heusler semiconductor. J. Alloy Compd. 850, 156615 (2021)

    Article  Google Scholar 

  57. S.A. Khandy, Inspecting the electronic structure and thermoelectric power factor of novel p-type half-Heuslers. J. Alloy Compd. 11, 20756 (2021)

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Ningxia Natural Science Foundation (2023AAC03007) and the Scientific and Technological Breakthrough Project of Ningxia Province under Grant number (2023BEE03000). The authors are also thankful to the High Performance Computing Center at Ningxia University which provided computing resource.

Author information

Authors and Affiliations

Authors

Contributions

FW: investigation, writing original draft, HC: supervision, writing-review, JQ: formal analysis, YH: data curation, editing, RY: visualization, ZY: validation. All authors contributed equally to the paper.

Corresponding author

Correspondence to Huanming Chen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Chen, H., Qiao, J. et al. The electronic structure and elastic properties of Ca doped Ti2Ni alloy. Eur. Phys. J. B 96, 93 (2023). https://doi.org/10.1140/epjb/s10051-023-00551-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00551-w

Navigation